Domain Wall Solitons Arising in Classical Gauge Field Theories

Domain wall solitons are basic constructs realizing phase transitions in various field-theoretical models and are solutions to some nonlinear ordinary differential equations descending from the corresponding full sets of governing equations in higher dimensions. In this paper, we present a series of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2019-07, Vol.369 (1), p.317-349
Hauptverfasser: Cao, Lei, Chen, Shouxin, Yang, Yisong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Domain wall solitons are basic constructs realizing phase transitions in various field-theoretical models and are solutions to some nonlinear ordinary differential equations descending from the corresponding full sets of governing equations in higher dimensions. In this paper, we present a series of domain wall solitons arising in several classical gauge field theory models. In the context of the Abelian gauge field theory, we unveil the surprising result that the solutions may explicitly be constructed, which enriches our knowledge on integrability of the planar Liouville type equations in their one-dimensional limits. In the context of the non-Abelian gauge field theory, we obtain some existence theorems for domain wall solutions arising in the electroweak type theories by developing some methods of calculus of variations formulated as direct and constrained minimization problems over a weighted Sobolev space.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-019-03468-7