Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems
In this paper, the effects of pure water, SiO 2 /water nanofluid, and a phase-change material (PCM) as coolants on the performance of a photovoltaic thermal (PVT) system are numerically investigated. The simulations are performed on two modules of PVT with PCM (PVT/PCM module) and without (PVT modul...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2019-07, Vol.137 (2), p.623-636 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the effects of pure water, SiO
2
/water nanofluid, and a phase-change material (PCM) as coolants on the performance of a photovoltaic thermal (PVT) system are numerically investigated. The simulations are performed on two modules of PVT with PCM (PVT/PCM module) and without (PVT module). Parameters including PV surface temperature, thermal, and electrical efficiencies of the systems are studied and compared with each other. Moreover, the results of nanofluid as a working fluid is compared with those obtained using pure water. The results show that in the water-based PVT/PCM, the average PV cell temperature is decreased by 16 °C compared to that of the PVT system. This results in an increase of 8% in the electrical efficiency and 25% in the thermal efficiency. In addition, using nanofluid (SiO
2
with 1 and 3 mass% mass fraction) as a coolant in the PVT/PCM system increases the thermal efficiency by 3.51% and 10.40%, for 1 and 3 mass%, respectively, compared to that of the PVT/PCM with pure water as a coolant. This study shows that increasing the melting temperature of the phase-change material leads to an increase in the thermal efficiency of the PVT/PCM system. |
---|---|
ISSN: | 1388-6150 1588-2926 |
DOI: | 10.1007/s10973-018-7972-6 |