Combinatorial Mutation Analysis of ω‐Transaminase to Create an Engineered Variant Capable of Asymmetric Amination of Isobutyrophenone

ω‐Transaminase (ω‐TA) is an important enzyme for asymmetric synthesis of chiral amines. Rapid creation of a desirable ω‐TA variant, readily available for scalable process operation, is demanded and has attracted intense research efforts. In this study, we aimed to develop a quantitative mutational a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced synthesis & catalysis 2019-06, Vol.361 (11), p.2594-2606
Hauptverfasser: Kim, Hong‐Gon, Han, Sang‐Woo, Shin, Jong‐Shik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2606
container_issue 11
container_start_page 2594
container_title Advanced synthesis & catalysis
container_volume 361
creator Kim, Hong‐Gon
Han, Sang‐Woo
Shin, Jong‐Shik
description ω‐Transaminase (ω‐TA) is an important enzyme for asymmetric synthesis of chiral amines. Rapid creation of a desirable ω‐TA variant, readily available for scalable process operation, is demanded and has attracted intense research efforts. In this study, we aimed to develop a quantitative mutational analysis (i. e., R‐analysis) that enables prediction of combinatorial mutation outcomes and thereby provides reliable guidance of enzyme engineering through combination of already characterized mutations. To this end, we determined three mutatable active‐site residues of ω‐TA from Ochrobactrum anthropi (i. e., leucine 57, tryptophan 58 and valine 154) by examining activities of nine alanine‐scanning mutants for seven substrate pairs. The R‐analysis of the mutatable residues is based on assessment of changes in relative activities for a series of structurally analogous substrates. Using three sets of substrates (five α‐keto acids, six arylalkylamines and three arylalkyl ketones), we found that combination of two point mutations display additive effects of each mutational outcome such as steric relaxation for bulky substrates or catalytic enhancement for amination of ketones. Consistent with the R‐analysis‐based prediction, the ω‐TA variant harboring triple alanine mutations, i. e. L57A, W58A and V154A, showed high activity improvements for bulky substrates, e. g. a 3.2×104‐fold activity increase for 1‐phenylbutylamine. The triple mutant even enabled asymmetric amination of isobutyrophenone, carrying a branched‐chain alkyl substituent to be accepted in a small binding pocket that normally shows a steric limit up to an ethyl group, with >99% ee of a resulting (S)‐amine.
doi_str_mv 10.1002/adsc.201900184
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235575091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235575091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-1740289b9f3f813b1acf0c993bbfc7085da05009aa7904268a9672f444ba88513</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEEqWwMltiTrGTOI7HKBSoVMRAYbUuqQOpEjvYjlA2Rth4M96BJyGhqIxMdzp93y_d73mnBM8IxsE5rG0xCzDhGJMk2vMmJCbUj0jM93c7xYfekbWbAWEJYxPvLdNNXilw2lRQo5vOgau0QqmCureVRbpEn-9frx8rA8pCM6BWIqdRZiQ4iUChuXqslJRGrtEDDCnKoQxayGs5yqntm0Y6UxUoHe2f9OG-sDrvXG90-ySVVvLYOyihtvLkd069-8v5Krv2l7dXiyxd-kVIWeQTFuEg4TkvwzIhYU6gKHHBeZjnZcFwQteAKcYcgHEcBXECPGZBGUVRDklCSTj1zra5rdHPnbRObHRnhm-tCIKQUkYxH6nZliqMttbIUrSmasD0gmAxti3GtsWu7UHgW-GlqmX_Dy3Si7vsz_0GPKyGqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235575091</pqid></control><display><type>article</type><title>Combinatorial Mutation Analysis of ω‐Transaminase to Create an Engineered Variant Capable of Asymmetric Amination of Isobutyrophenone</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Hong‐Gon ; Han, Sang‐Woo ; Shin, Jong‐Shik</creator><creatorcontrib>Kim, Hong‐Gon ; Han, Sang‐Woo ; Shin, Jong‐Shik</creatorcontrib><description>ω‐Transaminase (ω‐TA) is an important enzyme for asymmetric synthesis of chiral amines. Rapid creation of a desirable ω‐TA variant, readily available for scalable process operation, is demanded and has attracted intense research efforts. In this study, we aimed to develop a quantitative mutational analysis (i. e., R‐analysis) that enables prediction of combinatorial mutation outcomes and thereby provides reliable guidance of enzyme engineering through combination of already characterized mutations. To this end, we determined three mutatable active‐site residues of ω‐TA from Ochrobactrum anthropi (i. e., leucine 57, tryptophan 58 and valine 154) by examining activities of nine alanine‐scanning mutants for seven substrate pairs. The R‐analysis of the mutatable residues is based on assessment of changes in relative activities for a series of structurally analogous substrates. Using three sets of substrates (five α‐keto acids, six arylalkylamines and three arylalkyl ketones), we found that combination of two point mutations display additive effects of each mutational outcome such as steric relaxation for bulky substrates or catalytic enhancement for amination of ketones. Consistent with the R‐analysis‐based prediction, the ω‐TA variant harboring triple alanine mutations, i. e. L57A, W58A and V154A, showed high activity improvements for bulky substrates, e. g. a 3.2×104‐fold activity increase for 1‐phenylbutylamine. The triple mutant even enabled asymmetric amination of isobutyrophenone, carrying a branched‐chain alkyl substituent to be accepted in a small binding pocket that normally shows a steric limit up to an ethyl group, with &gt;99% ee of a resulting (S)‐amine.</description><identifier>ISSN: 1615-4150</identifier><identifier>EISSN: 1615-4169</identifier><identifier>DOI: 10.1002/adsc.201900184</identifier><language>eng</language><publisher>Heidelberg: Wiley Subscription Services, Inc</publisher><subject>Alanine ; Amines ; asymmetric synthesis ; Asymmetry ; Catalysis ; Chain branching ; chiral amines ; Combinatorial analysis ; combinatorial mutation ; Enzymes ; Ketones ; Leucine ; Mutation ; protein engineering ; Residues ; Substrates ; Tryptophan ; Valine ; ω-transaminase</subject><ispartof>Advanced synthesis &amp; catalysis, 2019-06, Vol.361 (11), p.2594-2606</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-1740289b9f3f813b1acf0c993bbfc7085da05009aa7904268a9672f444ba88513</citedby><cites>FETCH-LOGICAL-c3574-1740289b9f3f813b1acf0c993bbfc7085da05009aa7904268a9672f444ba88513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadsc.201900184$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadsc.201900184$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kim, Hong‐Gon</creatorcontrib><creatorcontrib>Han, Sang‐Woo</creatorcontrib><creatorcontrib>Shin, Jong‐Shik</creatorcontrib><title>Combinatorial Mutation Analysis of ω‐Transaminase to Create an Engineered Variant Capable of Asymmetric Amination of Isobutyrophenone</title><title>Advanced synthesis &amp; catalysis</title><description>ω‐Transaminase (ω‐TA) is an important enzyme for asymmetric synthesis of chiral amines. Rapid creation of a desirable ω‐TA variant, readily available for scalable process operation, is demanded and has attracted intense research efforts. In this study, we aimed to develop a quantitative mutational analysis (i. e., R‐analysis) that enables prediction of combinatorial mutation outcomes and thereby provides reliable guidance of enzyme engineering through combination of already characterized mutations. To this end, we determined three mutatable active‐site residues of ω‐TA from Ochrobactrum anthropi (i. e., leucine 57, tryptophan 58 and valine 154) by examining activities of nine alanine‐scanning mutants for seven substrate pairs. The R‐analysis of the mutatable residues is based on assessment of changes in relative activities for a series of structurally analogous substrates. Using three sets of substrates (five α‐keto acids, six arylalkylamines and three arylalkyl ketones), we found that combination of two point mutations display additive effects of each mutational outcome such as steric relaxation for bulky substrates or catalytic enhancement for amination of ketones. Consistent with the R‐analysis‐based prediction, the ω‐TA variant harboring triple alanine mutations, i. e. L57A, W58A and V154A, showed high activity improvements for bulky substrates, e. g. a 3.2×104‐fold activity increase for 1‐phenylbutylamine. The triple mutant even enabled asymmetric amination of isobutyrophenone, carrying a branched‐chain alkyl substituent to be accepted in a small binding pocket that normally shows a steric limit up to an ethyl group, with &gt;99% ee of a resulting (S)‐amine.</description><subject>Alanine</subject><subject>Amines</subject><subject>asymmetric synthesis</subject><subject>Asymmetry</subject><subject>Catalysis</subject><subject>Chain branching</subject><subject>chiral amines</subject><subject>Combinatorial analysis</subject><subject>combinatorial mutation</subject><subject>Enzymes</subject><subject>Ketones</subject><subject>Leucine</subject><subject>Mutation</subject><subject>protein engineering</subject><subject>Residues</subject><subject>Substrates</subject><subject>Tryptophan</subject><subject>Valine</subject><subject>ω-transaminase</subject><issn>1615-4150</issn><issn>1615-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhiMEEqWwMltiTrGTOI7HKBSoVMRAYbUuqQOpEjvYjlA2Rth4M96BJyGhqIxMdzp93y_d73mnBM8IxsE5rG0xCzDhGJMk2vMmJCbUj0jM93c7xYfekbWbAWEJYxPvLdNNXilw2lRQo5vOgau0QqmCureVRbpEn-9frx8rA8pCM6BWIqdRZiQ4iUChuXqslJRGrtEDDCnKoQxayGs5yqntm0Y6UxUoHe2f9OG-sDrvXG90-ySVVvLYOyihtvLkd069-8v5Krv2l7dXiyxd-kVIWeQTFuEg4TkvwzIhYU6gKHHBeZjnZcFwQteAKcYcgHEcBXECPGZBGUVRDklCSTj1zra5rdHPnbRObHRnhm-tCIKQUkYxH6nZliqMttbIUrSmasD0gmAxti3GtsWu7UHgW-GlqmX_Dy3Si7vsz_0GPKyGqA</recordid><startdate>20190606</startdate><enddate>20190606</enddate><creator>Kim, Hong‐Gon</creator><creator>Han, Sang‐Woo</creator><creator>Shin, Jong‐Shik</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20190606</creationdate><title>Combinatorial Mutation Analysis of ω‐Transaminase to Create an Engineered Variant Capable of Asymmetric Amination of Isobutyrophenone</title><author>Kim, Hong‐Gon ; Han, Sang‐Woo ; Shin, Jong‐Shik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-1740289b9f3f813b1acf0c993bbfc7085da05009aa7904268a9672f444ba88513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alanine</topic><topic>Amines</topic><topic>asymmetric synthesis</topic><topic>Asymmetry</topic><topic>Catalysis</topic><topic>Chain branching</topic><topic>chiral amines</topic><topic>Combinatorial analysis</topic><topic>combinatorial mutation</topic><topic>Enzymes</topic><topic>Ketones</topic><topic>Leucine</topic><topic>Mutation</topic><topic>protein engineering</topic><topic>Residues</topic><topic>Substrates</topic><topic>Tryptophan</topic><topic>Valine</topic><topic>ω-transaminase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hong‐Gon</creatorcontrib><creatorcontrib>Han, Sang‐Woo</creatorcontrib><creatorcontrib>Shin, Jong‐Shik</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced synthesis &amp; catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hong‐Gon</au><au>Han, Sang‐Woo</au><au>Shin, Jong‐Shik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combinatorial Mutation Analysis of ω‐Transaminase to Create an Engineered Variant Capable of Asymmetric Amination of Isobutyrophenone</atitle><jtitle>Advanced synthesis &amp; catalysis</jtitle><date>2019-06-06</date><risdate>2019</risdate><volume>361</volume><issue>11</issue><spage>2594</spage><epage>2606</epage><pages>2594-2606</pages><issn>1615-4150</issn><eissn>1615-4169</eissn><abstract>ω‐Transaminase (ω‐TA) is an important enzyme for asymmetric synthesis of chiral amines. Rapid creation of a desirable ω‐TA variant, readily available for scalable process operation, is demanded and has attracted intense research efforts. In this study, we aimed to develop a quantitative mutational analysis (i. e., R‐analysis) that enables prediction of combinatorial mutation outcomes and thereby provides reliable guidance of enzyme engineering through combination of already characterized mutations. To this end, we determined three mutatable active‐site residues of ω‐TA from Ochrobactrum anthropi (i. e., leucine 57, tryptophan 58 and valine 154) by examining activities of nine alanine‐scanning mutants for seven substrate pairs. The R‐analysis of the mutatable residues is based on assessment of changes in relative activities for a series of structurally analogous substrates. Using three sets of substrates (five α‐keto acids, six arylalkylamines and three arylalkyl ketones), we found that combination of two point mutations display additive effects of each mutational outcome such as steric relaxation for bulky substrates or catalytic enhancement for amination of ketones. Consistent with the R‐analysis‐based prediction, the ω‐TA variant harboring triple alanine mutations, i. e. L57A, W58A and V154A, showed high activity improvements for bulky substrates, e. g. a 3.2×104‐fold activity increase for 1‐phenylbutylamine. The triple mutant even enabled asymmetric amination of isobutyrophenone, carrying a branched‐chain alkyl substituent to be accepted in a small binding pocket that normally shows a steric limit up to an ethyl group, with &gt;99% ee of a resulting (S)‐amine.</abstract><cop>Heidelberg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adsc.201900184</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-4150
ispartof Advanced synthesis & catalysis, 2019-06, Vol.361 (11), p.2594-2606
issn 1615-4150
1615-4169
language eng
recordid cdi_proquest_journals_2235575091
source Wiley Online Library Journals Frontfile Complete
subjects Alanine
Amines
asymmetric synthesis
Asymmetry
Catalysis
Chain branching
chiral amines
Combinatorial analysis
combinatorial mutation
Enzymes
Ketones
Leucine
Mutation
protein engineering
Residues
Substrates
Tryptophan
Valine
ω-transaminase
title Combinatorial Mutation Analysis of ω‐Transaminase to Create an Engineered Variant Capable of Asymmetric Amination of Isobutyrophenone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combinatorial%20Mutation%20Analysis%20of%20%CF%89%E2%80%90Transaminase%20to%20Create%20an%20Engineered%20Variant%20Capable%20of%20Asymmetric%20Amination%20of%20Isobutyrophenone&rft.jtitle=Advanced%20synthesis%20&%20catalysis&rft.au=Kim,%20Hong%E2%80%90Gon&rft.date=2019-06-06&rft.volume=361&rft.issue=11&rft.spage=2594&rft.epage=2606&rft.pages=2594-2606&rft.issn=1615-4150&rft.eissn=1615-4169&rft_id=info:doi/10.1002/adsc.201900184&rft_dat=%3Cproquest_cross%3E2235575091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235575091&rft_id=info:pmid/&rfr_iscdi=true