Combinatorial Mutation Analysis of ω‐Transaminase to Create an Engineered Variant Capable of Asymmetric Amination of Isobutyrophenone

ω‐Transaminase (ω‐TA) is an important enzyme for asymmetric synthesis of chiral amines. Rapid creation of a desirable ω‐TA variant, readily available for scalable process operation, is demanded and has attracted intense research efforts. In this study, we aimed to develop a quantitative mutational a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced synthesis & catalysis 2019-06, Vol.361 (11), p.2594-2606
Hauptverfasser: Kim, Hong‐Gon, Han, Sang‐Woo, Shin, Jong‐Shik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ω‐Transaminase (ω‐TA) is an important enzyme for asymmetric synthesis of chiral amines. Rapid creation of a desirable ω‐TA variant, readily available for scalable process operation, is demanded and has attracted intense research efforts. In this study, we aimed to develop a quantitative mutational analysis (i. e., R‐analysis) that enables prediction of combinatorial mutation outcomes and thereby provides reliable guidance of enzyme engineering through combination of already characterized mutations. To this end, we determined three mutatable active‐site residues of ω‐TA from Ochrobactrum anthropi (i. e., leucine 57, tryptophan 58 and valine 154) by examining activities of nine alanine‐scanning mutants for seven substrate pairs. The R‐analysis of the mutatable residues is based on assessment of changes in relative activities for a series of structurally analogous substrates. Using three sets of substrates (five α‐keto acids, six arylalkylamines and three arylalkyl ketones), we found that combination of two point mutations display additive effects of each mutational outcome such as steric relaxation for bulky substrates or catalytic enhancement for amination of ketones. Consistent with the R‐analysis‐based prediction, the ω‐TA variant harboring triple alanine mutations, i. e. L57A, W58A and V154A, showed high activity improvements for bulky substrates, e. g. a 3.2×104‐fold activity increase for 1‐phenylbutylamine. The triple mutant even enabled asymmetric amination of isobutyrophenone, carrying a branched‐chain alkyl substituent to be accepted in a small binding pocket that normally shows a steric limit up to an ethyl group, with >99% ee of a resulting (S)‐amine.
ISSN:1615-4150
1615-4169
DOI:10.1002/adsc.201900184