The Binomial Theorem and motivic classes of universal quasi-split tori

Taking symmetric powers of varieties can be seen as a functor from the category of varieties to the category of varieties with an action by the symmetric group. We study a corresponding map between the Grothendieck groups of these categories. In particular, we derive a binomial formula and use it to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2019-07, Vol.159 (3-4), p.347-361, Article 347
1. Verfasser: Bergh, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 361
container_issue 3-4
container_start_page 347
container_title Manuscripta mathematica
container_volume 159
creator Bergh, Daniel
description Taking symmetric powers of varieties can be seen as a functor from the category of varieties to the category of varieties with an action by the symmetric group. We study a corresponding map between the Grothendieck groups of these categories. In particular, we derive a binomial formula and use it to give explicit expressions for the classes of universal quasi-split tori in the equivariant Grothendieck group of varieties.
doi_str_mv 10.1007/s00229-018-1074-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235161141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235161141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-619c74355ba0d66d917e02fe4c4750c8f57e4ace28ff6e1a4ae00c6be108c4363</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuC5-hMNptsj1qsCgUv9RzSNKspu5s2yRb89qasIAh6Gob3fvPnEXKNcIsA8i4CMDajgDVFkJzyEzJBXjKKsq5OySTLFWUC8ZxcxLgFyKIsJ2Sx-rDFg-t953Rb5MYH2xW63xSdT-7gTGFaHaONhW-KoXcHG2I27gcdHY271qUi-eAuyVmj22ivvuuUvC0eV_Nnunx9epnfL6kpUSQqcGYkL6tqrWEjxGaG0gJrLDdcVmDqppKWa2NZ3TTCoubaAhixtgi14aUop-RmnLsLfj_YmNTWD6HPKxVjZYX5QY7ZhaPLBB9jsI3aBdfp8KkQ1DEuNcalclzqGJfimZG_GOOSTs73KWjX_kuykYx5S_9uw89Nf0NfZuJ-Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235161141</pqid></control><display><type>article</type><title>The Binomial Theorem and motivic classes of universal quasi-split tori</title><source>SpringerNature Journals</source><creator>Bergh, Daniel</creator><creatorcontrib>Bergh, Daniel</creatorcontrib><description>Taking symmetric powers of varieties can be seen as a functor from the category of varieties to the category of varieties with an action by the symmetric group. We study a corresponding map between the Grothendieck groups of these categories. In particular, we derive a binomial formula and use it to give explicit expressions for the classes of universal quasi-split tori in the equivariant Grothendieck group of varieties.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-018-1074-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Binomial theorem ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topological Groups ; Toruses</subject><ispartof>Manuscripta mathematica, 2019-07, Vol.159 (3-4), p.347-361, Article 347</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-619c74355ba0d66d917e02fe4c4750c8f57e4ace28ff6e1a4ae00c6be108c4363</citedby><cites>FETCH-LOGICAL-c316t-619c74355ba0d66d917e02fe4c4750c8f57e4ace28ff6e1a4ae00c6be108c4363</cites><orcidid>0000-0002-1709-6489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-018-1074-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-018-1074-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bergh, Daniel</creatorcontrib><title>The Binomial Theorem and motivic classes of universal quasi-split tori</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>Taking symmetric powers of varieties can be seen as a functor from the category of varieties to the category of varieties with an action by the symmetric group. We study a corresponding map between the Grothendieck groups of these categories. In particular, we derive a binomial formula and use it to give explicit expressions for the classes of universal quasi-split tori in the equivariant Grothendieck group of varieties.</description><subject>Algebraic Geometry</subject><subject>Binomial theorem</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topological Groups</subject><subject>Toruses</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNuC5-hMNptsj1qsCgUv9RzSNKspu5s2yRb89qasIAh6Gob3fvPnEXKNcIsA8i4CMDajgDVFkJzyEzJBXjKKsq5OySTLFWUC8ZxcxLgFyKIsJ2Sx-rDFg-t953Rb5MYH2xW63xSdT-7gTGFaHaONhW-KoXcHG2I27gcdHY271qUi-eAuyVmj22ivvuuUvC0eV_Nnunx9epnfL6kpUSQqcGYkL6tqrWEjxGaG0gJrLDdcVmDqppKWa2NZ3TTCoubaAhixtgi14aUop-RmnLsLfj_YmNTWD6HPKxVjZYX5QY7ZhaPLBB9jsI3aBdfp8KkQ1DEuNcalclzqGJfimZG_GOOSTs73KWjX_kuykYx5S_9uw89Nf0NfZuJ-Pw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bergh, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1709-6489</orcidid></search><sort><creationdate>20190701</creationdate><title>The Binomial Theorem and motivic classes of universal quasi-split tori</title><author>Bergh, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-619c74355ba0d66d917e02fe4c4750c8f57e4ace28ff6e1a4ae00c6be108c4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebraic Geometry</topic><topic>Binomial theorem</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topological Groups</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergh, Daniel</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergh, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Binomial Theorem and motivic classes of universal quasi-split tori</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>159</volume><issue>3-4</issue><spage>347</spage><epage>361</epage><pages>347-361</pages><artnum>347</artnum><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>Taking symmetric powers of varieties can be seen as a functor from the category of varieties to the category of varieties with an action by the symmetric group. We study a corresponding map between the Grothendieck groups of these categories. In particular, we derive a binomial formula and use it to give explicit expressions for the classes of universal quasi-split tori in the equivariant Grothendieck group of varieties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-018-1074-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1709-6489</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2019-07, Vol.159 (3-4), p.347-361, Article 347
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2235161141
source SpringerNature Journals
subjects Algebraic Geometry
Binomial theorem
Calculus of Variations and Optimal Control
Optimization
Geometry
Lie Groups
Mathematics
Mathematics and Statistics
Number Theory
Topological Groups
Toruses
title The Binomial Theorem and motivic classes of universal quasi-split tori
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Binomial%20Theorem%20and%20motivic%20classes%20of%20universal%20quasi-split%20tori&rft.jtitle=Manuscripta%20mathematica&rft.au=Bergh,%20Daniel&rft.date=2019-07-01&rft.volume=159&rft.issue=3-4&rft.spage=347&rft.epage=361&rft.pages=347-361&rft.artnum=347&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-018-1074-4&rft_dat=%3Cproquest_cross%3E2235161141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235161141&rft_id=info:pmid/&rfr_iscdi=true