The Binomial Theorem and motivic classes of universal quasi-split tori
Taking symmetric powers of varieties can be seen as a functor from the category of varieties to the category of varieties with an action by the symmetric group. We study a corresponding map between the Grothendieck groups of these categories. In particular, we derive a binomial formula and use it to...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2019-07, Vol.159 (3-4), p.347-361, Article 347 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | 3-4 |
container_start_page | 347 |
container_title | Manuscripta mathematica |
container_volume | 159 |
creator | Bergh, Daniel |
description | Taking symmetric powers of varieties can be seen as a functor from the category of varieties to the category of varieties with an action by the symmetric group. We study a corresponding map between the Grothendieck groups of these categories. In particular, we derive a binomial formula and use it to give explicit expressions for the classes of universal quasi-split tori in the equivariant Grothendieck group of varieties. |
doi_str_mv | 10.1007/s00229-018-1074-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235161141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235161141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-619c74355ba0d66d917e02fe4c4750c8f57e4ace28ff6e1a4ae00c6be108c4363</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuC5-hMNptsj1qsCgUv9RzSNKspu5s2yRb89qasIAh6Gob3fvPnEXKNcIsA8i4CMDajgDVFkJzyEzJBXjKKsq5OySTLFWUC8ZxcxLgFyKIsJ2Sx-rDFg-t953Rb5MYH2xW63xSdT-7gTGFaHaONhW-KoXcHG2I27gcdHY271qUi-eAuyVmj22ivvuuUvC0eV_Nnunx9epnfL6kpUSQqcGYkL6tqrWEjxGaG0gJrLDdcVmDqppKWa2NZ3TTCoubaAhixtgi14aUop-RmnLsLfj_YmNTWD6HPKxVjZYX5QY7ZhaPLBB9jsI3aBdfp8KkQ1DEuNcalclzqGJfimZG_GOOSTs73KWjX_kuykYx5S_9uw89Nf0NfZuJ-Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235161141</pqid></control><display><type>article</type><title>The Binomial Theorem and motivic classes of universal quasi-split tori</title><source>SpringerNature Journals</source><creator>Bergh, Daniel</creator><creatorcontrib>Bergh, Daniel</creatorcontrib><description>Taking symmetric powers of varieties can be seen as a functor from the category of varieties to the category of varieties with an action by the symmetric group. We study a corresponding map between the Grothendieck groups of these categories. In particular, we derive a binomial formula and use it to give explicit expressions for the classes of universal quasi-split tori in the equivariant Grothendieck group of varieties.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-018-1074-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Binomial theorem ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topological Groups ; Toruses</subject><ispartof>Manuscripta mathematica, 2019-07, Vol.159 (3-4), p.347-361, Article 347</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-619c74355ba0d66d917e02fe4c4750c8f57e4ace28ff6e1a4ae00c6be108c4363</citedby><cites>FETCH-LOGICAL-c316t-619c74355ba0d66d917e02fe4c4750c8f57e4ace28ff6e1a4ae00c6be108c4363</cites><orcidid>0000-0002-1709-6489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-018-1074-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-018-1074-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bergh, Daniel</creatorcontrib><title>The Binomial Theorem and motivic classes of universal quasi-split tori</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>Taking symmetric powers of varieties can be seen as a functor from the category of varieties to the category of varieties with an action by the symmetric group. We study a corresponding map between the Grothendieck groups of these categories. In particular, we derive a binomial formula and use it to give explicit expressions for the classes of universal quasi-split tori in the equivariant Grothendieck group of varieties.</description><subject>Algebraic Geometry</subject><subject>Binomial theorem</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topological Groups</subject><subject>Toruses</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNuC5-hMNptsj1qsCgUv9RzSNKspu5s2yRb89qasIAh6Gob3fvPnEXKNcIsA8i4CMDajgDVFkJzyEzJBXjKKsq5OySTLFWUC8ZxcxLgFyKIsJ2Sx-rDFg-t953Rb5MYH2xW63xSdT-7gTGFaHaONhW-KoXcHG2I27gcdHY271qUi-eAuyVmj22ivvuuUvC0eV_Nnunx9epnfL6kpUSQqcGYkL6tqrWEjxGaG0gJrLDdcVmDqppKWa2NZ3TTCoubaAhixtgi14aUop-RmnLsLfj_YmNTWD6HPKxVjZYX5QY7ZhaPLBB9jsI3aBdfp8KkQ1DEuNcalclzqGJfimZG_GOOSTs73KWjX_kuykYx5S_9uw89Nf0NfZuJ-Pw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bergh, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1709-6489</orcidid></search><sort><creationdate>20190701</creationdate><title>The Binomial Theorem and motivic classes of universal quasi-split tori</title><author>Bergh, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-619c74355ba0d66d917e02fe4c4750c8f57e4ace28ff6e1a4ae00c6be108c4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebraic Geometry</topic><topic>Binomial theorem</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topological Groups</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergh, Daniel</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergh, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Binomial Theorem and motivic classes of universal quasi-split tori</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>159</volume><issue>3-4</issue><spage>347</spage><epage>361</epage><pages>347-361</pages><artnum>347</artnum><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>Taking symmetric powers of varieties can be seen as a functor from the category of varieties to the category of varieties with an action by the symmetric group. We study a corresponding map between the Grothendieck groups of these categories. In particular, we derive a binomial formula and use it to give explicit expressions for the classes of universal quasi-split tori in the equivariant Grothendieck group of varieties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-018-1074-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1709-6489</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-2611 |
ispartof | Manuscripta mathematica, 2019-07, Vol.159 (3-4), p.347-361, Article 347 |
issn | 0025-2611 1432-1785 |
language | eng |
recordid | cdi_proquest_journals_2235161141 |
source | SpringerNature Journals |
subjects | Algebraic Geometry Binomial theorem Calculus of Variations and Optimal Control Optimization Geometry Lie Groups Mathematics Mathematics and Statistics Number Theory Topological Groups Toruses |
title | The Binomial Theorem and motivic classes of universal quasi-split tori |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Binomial%20Theorem%20and%20motivic%20classes%20of%20universal%20quasi-split%20tori&rft.jtitle=Manuscripta%20mathematica&rft.au=Bergh,%20Daniel&rft.date=2019-07-01&rft.volume=159&rft.issue=3-4&rft.spage=347&rft.epage=361&rft.pages=347-361&rft.artnum=347&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-018-1074-4&rft_dat=%3Cproquest_cross%3E2235161141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235161141&rft_id=info:pmid/&rfr_iscdi=true |