The Binomial Theorem and motivic classes of universal quasi-split tori

Taking symmetric powers of varieties can be seen as a functor from the category of varieties to the category of varieties with an action by the symmetric group. We study a corresponding map between the Grothendieck groups of these categories. In particular, we derive a binomial formula and use it to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2019-07, Vol.159 (3-4), p.347-361, Article 347
1. Verfasser: Bergh, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Taking symmetric powers of varieties can be seen as a functor from the category of varieties to the category of varieties with an action by the symmetric group. We study a corresponding map between the Grothendieck groups of these categories. In particular, we derive a binomial formula and use it to give explicit expressions for the classes of universal quasi-split tori in the equivariant Grothendieck group of varieties.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-018-1074-4