Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity
Graphene is a promising material in membrane separation. However, high water permeability as well as high rejection against contaminants is still demanded yet challenging for graphene-based membranes fabrication. In this work, we synthesized an oxygen-containing group-modified reduced graphene oxide...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2019-04, Vol.145, p.140-148 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene is a promising material in membrane separation. However, high water permeability as well as high rejection against contaminants is still demanded yet challenging for graphene-based membranes fabrication. In this work, we synthesized an oxygen-containing group-modified reduced graphene oxide membrane (O-rGOM), which was designed by substituting the surface layers of rGO membranes with GO flakes. The number of oxygen-containing groups on membrane surface was modulated by the [GO]/[rGO] ratio during the construction of O-rGOM. Results demonstrated that a [GO]/[rGO] ratio of 1:4 was optimal, with oxygen-containing groups modifying the pore surface of rGO laminates effectively. Furthermore, the O-rGOM showed improved hydrophilicity and water permeability. In addition, modification of the oxygen-containing groups promoted the zeta potential around the membrane pore, resulting in enhanced electrostatic interaction between the membrane and charged contaminants. The O-rGOM structure exhibited 18.2% and 5.2% improvement in acid orange 7 and methylene blue rejection, respectively, as well as ∼2.6 times enhancement in water permeability compared with the rGOM. This work provides a feasible approach for the design of graphene-based membranes to improve filtration performance with enhanced water permeability.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2018.12.098 |