Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure

In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite sola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-06, Vol.9 (21), p.n/a
Hauptverfasser: Gharibzadeh, Saba, Abdollahi Nejand, Bahram, Jakoby, Marius, Abzieher, Tobias, Hauschild, Dirk, Moghadamzadeh, Somayeh, Schwenzer, Jonas A., Brenner, Philipp, Schmager, Raphael, Haghighirad, Amir Abbas, Weinhardt, Lothar, Lemmer, Uli, Richards, Bryce S., Howard, Ian A., Paetzold, Ulrich W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title Advanced energy materials
container_volume 9
creator Gharibzadeh, Saba
Abdollahi Nejand, Bahram
Jakoby, Marius
Abzieher, Tobias
Hauschild, Dirk
Moghadamzadeh, Somayeh
Schwenzer, Jonas A.
Brenner, Philipp
Schmager, Raphael
Haghighirad, Amir Abbas
Weinhardt, Lothar
Lemmer, Uli
Richards, Bryce S.
Howard, Ian A.
Paetzold, Ulrich W.
description In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic−inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV. By coating n‐butylammonium bromide on wide‐bandgap double‐cation perovskite absorber layers (EG ≈ 1.72 eV), a thin 2D Ruddlesden–Popper perovskite layer of intermediate phase is formed. The resulting heterostructure mitigates nonradiative recombination and enables a high open‐circuit voltage of up to 1.31 V and stable power output efficiencies of up to 19.4%.
doi_str_mv 10.1002/aenm.201803699
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2234875731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234875731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4229-88683d4a59093be164c180e90ffef1bd7ad7f6e221216a2a3edc625cd940528b3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIVKVXzpE4p_UjLx9LWihSoQgoHCM33lQuaRJsB1ROfALfyJfgqqhwYy_70Mzu7CB0SnCfYEwHAqp1n2KSYBZxfoA6JCKBHyUBPtzXjB6jnjEr7CLgBDPWQdUd5LWW3qyB6uvjM1U6b5X1HuvSiiV4T0qCG5-LSi5F492Crl_Ns7Lg3del0F4KZWm8uVWlelfV0qOjARv9hU3AusZY3ea21XCCjgpRGuj95C6aX4wf0ok_nV1epcOpnweUcj9JnFoZiJBjzhZAoiB3nwHHRQEFWchYyLiIgFJCSSSoYCDziIa55AEOabJgXXS229vo-qUFY7NV3erKncwoZUEShzEjDtXfoXIn0WgoskartdCbjOBsa2u2tTXb2-oIfEd4UyVs_kFnw_HN9S_3G9-ifjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234875731</pqid></control><display><type>article</type><title>Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gharibzadeh, Saba ; Abdollahi Nejand, Bahram ; Jakoby, Marius ; Abzieher, Tobias ; Hauschild, Dirk ; Moghadamzadeh, Somayeh ; Schwenzer, Jonas A. ; Brenner, Philipp ; Schmager, Raphael ; Haghighirad, Amir Abbas ; Weinhardt, Lothar ; Lemmer, Uli ; Richards, Bryce S. ; Howard, Ian A. ; Paetzold, Ulrich W.</creator><creatorcontrib>Gharibzadeh, Saba ; Abdollahi Nejand, Bahram ; Jakoby, Marius ; Abzieher, Tobias ; Hauschild, Dirk ; Moghadamzadeh, Somayeh ; Schwenzer, Jonas A. ; Brenner, Philipp ; Schmager, Raphael ; Haghighirad, Amir Abbas ; Weinhardt, Lothar ; Lemmer, Uli ; Richards, Bryce S. ; Howard, Ian A. ; Paetzold, Ulrich W.</creatorcontrib><description>In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic−inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV. By coating n‐butylammonium bromide on wide‐bandgap double‐cation perovskite absorber layers (EG ≈ 1.72 eV), a thin 2D Ruddlesden–Popper perovskite layer of intermediate phase is formed. The resulting heterostructure mitigates nonradiative recombination and enables a high open‐circuit voltage of up to 1.31 V and stable power output efficiencies of up to 19.4%.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201803699</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D Ruddlesden–Popper ; 2D/3D perovskite heterostructure ; Absorbers ; Electric potential ; Energy conversion efficiency ; Energy gap ; Heterostructures ; metal halide perovskites ; Perovskites ; Photovoltaic cells ; photovoltaics ; Solar cells ; Spin coating ; wide bandgap</subject><ispartof>Advanced energy materials, 2019-06, Vol.9 (21), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4229-88683d4a59093be164c180e90ffef1bd7ad7f6e221216a2a3edc625cd940528b3</citedby><cites>FETCH-LOGICAL-c4229-88683d4a59093be164c180e90ffef1bd7ad7f6e221216a2a3edc625cd940528b3</cites><orcidid>0000-0001-9088-8944 ; 0000-0002-1557-8361 ; 0000-0003-3361-1054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201803699$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201803699$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gharibzadeh, Saba</creatorcontrib><creatorcontrib>Abdollahi Nejand, Bahram</creatorcontrib><creatorcontrib>Jakoby, Marius</creatorcontrib><creatorcontrib>Abzieher, Tobias</creatorcontrib><creatorcontrib>Hauschild, Dirk</creatorcontrib><creatorcontrib>Moghadamzadeh, Somayeh</creatorcontrib><creatorcontrib>Schwenzer, Jonas A.</creatorcontrib><creatorcontrib>Brenner, Philipp</creatorcontrib><creatorcontrib>Schmager, Raphael</creatorcontrib><creatorcontrib>Haghighirad, Amir Abbas</creatorcontrib><creatorcontrib>Weinhardt, Lothar</creatorcontrib><creatorcontrib>Lemmer, Uli</creatorcontrib><creatorcontrib>Richards, Bryce S.</creatorcontrib><creatorcontrib>Howard, Ian A.</creatorcontrib><creatorcontrib>Paetzold, Ulrich W.</creatorcontrib><title>Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure</title><title>Advanced energy materials</title><description>In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic−inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV. By coating n‐butylammonium bromide on wide‐bandgap double‐cation perovskite absorber layers (EG ≈ 1.72 eV), a thin 2D Ruddlesden–Popper perovskite layer of intermediate phase is formed. The resulting heterostructure mitigates nonradiative recombination and enables a high open‐circuit voltage of up to 1.31 V and stable power output efficiencies of up to 19.4%.</description><subject>2D Ruddlesden–Popper</subject><subject>2D/3D perovskite heterostructure</subject><subject>Absorbers</subject><subject>Electric potential</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Heterostructures</subject><subject>metal halide perovskites</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>photovoltaics</subject><subject>Solar cells</subject><subject>Spin coating</subject><subject>wide bandgap</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIVKVXzpE4p_UjLx9LWihSoQgoHCM33lQuaRJsB1ROfALfyJfgqqhwYy_70Mzu7CB0SnCfYEwHAqp1n2KSYBZxfoA6JCKBHyUBPtzXjB6jnjEr7CLgBDPWQdUd5LWW3qyB6uvjM1U6b5X1HuvSiiV4T0qCG5-LSi5F492Crl_Ns7Lg3del0F4KZWm8uVWlelfV0qOjARv9hU3AusZY3ea21XCCjgpRGuj95C6aX4wf0ok_nV1epcOpnweUcj9JnFoZiJBjzhZAoiB3nwHHRQEFWchYyLiIgFJCSSSoYCDziIa55AEOabJgXXS229vo-qUFY7NV3erKncwoZUEShzEjDtXfoXIn0WgoskartdCbjOBsa2u2tTXb2-oIfEd4UyVs_kFnw_HN9S_3G9-ifjk</recordid><startdate>20190605</startdate><enddate>20190605</enddate><creator>Gharibzadeh, Saba</creator><creator>Abdollahi Nejand, Bahram</creator><creator>Jakoby, Marius</creator><creator>Abzieher, Tobias</creator><creator>Hauschild, Dirk</creator><creator>Moghadamzadeh, Somayeh</creator><creator>Schwenzer, Jonas A.</creator><creator>Brenner, Philipp</creator><creator>Schmager, Raphael</creator><creator>Haghighirad, Amir Abbas</creator><creator>Weinhardt, Lothar</creator><creator>Lemmer, Uli</creator><creator>Richards, Bryce S.</creator><creator>Howard, Ian A.</creator><creator>Paetzold, Ulrich W.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9088-8944</orcidid><orcidid>https://orcid.org/0000-0002-1557-8361</orcidid><orcidid>https://orcid.org/0000-0003-3361-1054</orcidid></search><sort><creationdate>20190605</creationdate><title>Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure</title><author>Gharibzadeh, Saba ; Abdollahi Nejand, Bahram ; Jakoby, Marius ; Abzieher, Tobias ; Hauschild, Dirk ; Moghadamzadeh, Somayeh ; Schwenzer, Jonas A. ; Brenner, Philipp ; Schmager, Raphael ; Haghighirad, Amir Abbas ; Weinhardt, Lothar ; Lemmer, Uli ; Richards, Bryce S. ; Howard, Ian A. ; Paetzold, Ulrich W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4229-88683d4a59093be164c180e90ffef1bd7ad7f6e221216a2a3edc625cd940528b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2D Ruddlesden–Popper</topic><topic>2D/3D perovskite heterostructure</topic><topic>Absorbers</topic><topic>Electric potential</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Heterostructures</topic><topic>metal halide perovskites</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>photovoltaics</topic><topic>Solar cells</topic><topic>Spin coating</topic><topic>wide bandgap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gharibzadeh, Saba</creatorcontrib><creatorcontrib>Abdollahi Nejand, Bahram</creatorcontrib><creatorcontrib>Jakoby, Marius</creatorcontrib><creatorcontrib>Abzieher, Tobias</creatorcontrib><creatorcontrib>Hauschild, Dirk</creatorcontrib><creatorcontrib>Moghadamzadeh, Somayeh</creatorcontrib><creatorcontrib>Schwenzer, Jonas A.</creatorcontrib><creatorcontrib>Brenner, Philipp</creatorcontrib><creatorcontrib>Schmager, Raphael</creatorcontrib><creatorcontrib>Haghighirad, Amir Abbas</creatorcontrib><creatorcontrib>Weinhardt, Lothar</creatorcontrib><creatorcontrib>Lemmer, Uli</creatorcontrib><creatorcontrib>Richards, Bryce S.</creatorcontrib><creatorcontrib>Howard, Ian A.</creatorcontrib><creatorcontrib>Paetzold, Ulrich W.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gharibzadeh, Saba</au><au>Abdollahi Nejand, Bahram</au><au>Jakoby, Marius</au><au>Abzieher, Tobias</au><au>Hauschild, Dirk</au><au>Moghadamzadeh, Somayeh</au><au>Schwenzer, Jonas A.</au><au>Brenner, Philipp</au><au>Schmager, Raphael</au><au>Haghighirad, Amir Abbas</au><au>Weinhardt, Lothar</au><au>Lemmer, Uli</au><au>Richards, Bryce S.</au><au>Howard, Ian A.</au><au>Paetzold, Ulrich W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure</atitle><jtitle>Advanced energy materials</jtitle><date>2019-06-05</date><risdate>2019</risdate><volume>9</volume><issue>21</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic−inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV. By coating n‐butylammonium bromide on wide‐bandgap double‐cation perovskite absorber layers (EG ≈ 1.72 eV), a thin 2D Ruddlesden–Popper perovskite layer of intermediate phase is formed. The resulting heterostructure mitigates nonradiative recombination and enables a high open‐circuit voltage of up to 1.31 V and stable power output efficiencies of up to 19.4%.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201803699</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9088-8944</orcidid><orcidid>https://orcid.org/0000-0002-1557-8361</orcidid><orcidid>https://orcid.org/0000-0003-3361-1054</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-06, Vol.9 (21), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2234875731
source Wiley Online Library Journals Frontfile Complete
subjects 2D Ruddlesden–Popper
2D/3D perovskite heterostructure
Absorbers
Electric potential
Energy conversion efficiency
Energy gap
Heterostructures
metal halide perovskites
Perovskites
Photovoltaic cells
photovoltaics
Solar cells
Spin coating
wide bandgap
title Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Record%20Open%E2%80%90Circuit%20Voltage%20Wide%E2%80%90Bandgap%20Perovskite%20Solar%20Cells%20Utilizing%202D/3D%20Perovskite%20Heterostructure&rft.jtitle=Advanced%20energy%20materials&rft.au=Gharibzadeh,%20Saba&rft.date=2019-06-05&rft.volume=9&rft.issue=21&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201803699&rft_dat=%3Cproquest_cross%3E2234875731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234875731&rft_id=info:pmid/&rfr_iscdi=true