Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure
In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite sola...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2019-06, Vol.9 (21), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 9 |
creator | Gharibzadeh, Saba Abdollahi Nejand, Bahram Jakoby, Marius Abzieher, Tobias Hauschild, Dirk Moghadamzadeh, Somayeh Schwenzer, Jonas A. Brenner, Philipp Schmager, Raphael Haghighirad, Amir Abbas Weinhardt, Lothar Lemmer, Uli Richards, Bryce S. Howard, Ian A. Paetzold, Ulrich W. |
description | In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic−inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV.
By coating n‐butylammonium bromide on wide‐bandgap double‐cation perovskite absorber layers (EG ≈ 1.72 eV), a thin 2D Ruddlesden–Popper perovskite layer of intermediate phase is formed. The resulting heterostructure mitigates nonradiative recombination and enables a high open‐circuit voltage of up to 1.31 V and stable power output efficiencies of up to 19.4%. |
doi_str_mv | 10.1002/aenm.201803699 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2234875731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234875731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4229-88683d4a59093be164c180e90ffef1bd7ad7f6e221216a2a3edc625cd940528b3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIVKVXzpE4p_UjLx9LWihSoQgoHCM33lQuaRJsB1ROfALfyJfgqqhwYy_70Mzu7CB0SnCfYEwHAqp1n2KSYBZxfoA6JCKBHyUBPtzXjB6jnjEr7CLgBDPWQdUd5LWW3qyB6uvjM1U6b5X1HuvSiiV4T0qCG5-LSi5F492Crl_Ns7Lg3del0F4KZWm8uVWlelfV0qOjARv9hU3AusZY3ea21XCCjgpRGuj95C6aX4wf0ok_nV1epcOpnweUcj9JnFoZiJBjzhZAoiB3nwHHRQEFWchYyLiIgFJCSSSoYCDziIa55AEOabJgXXS229vo-qUFY7NV3erKncwoZUEShzEjDtXfoXIn0WgoskartdCbjOBsa2u2tTXb2-oIfEd4UyVs_kFnw_HN9S_3G9-ifjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234875731</pqid></control><display><type>article</type><title>Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gharibzadeh, Saba ; Abdollahi Nejand, Bahram ; Jakoby, Marius ; Abzieher, Tobias ; Hauschild, Dirk ; Moghadamzadeh, Somayeh ; Schwenzer, Jonas A. ; Brenner, Philipp ; Schmager, Raphael ; Haghighirad, Amir Abbas ; Weinhardt, Lothar ; Lemmer, Uli ; Richards, Bryce S. ; Howard, Ian A. ; Paetzold, Ulrich W.</creator><creatorcontrib>Gharibzadeh, Saba ; Abdollahi Nejand, Bahram ; Jakoby, Marius ; Abzieher, Tobias ; Hauschild, Dirk ; Moghadamzadeh, Somayeh ; Schwenzer, Jonas A. ; Brenner, Philipp ; Schmager, Raphael ; Haghighirad, Amir Abbas ; Weinhardt, Lothar ; Lemmer, Uli ; Richards, Bryce S. ; Howard, Ian A. ; Paetzold, Ulrich W.</creatorcontrib><description>In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic−inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV.
By coating n‐butylammonium bromide on wide‐bandgap double‐cation perovskite absorber layers (EG ≈ 1.72 eV), a thin 2D Ruddlesden–Popper perovskite layer of intermediate phase is formed. The resulting heterostructure mitigates nonradiative recombination and enables a high open‐circuit voltage of up to 1.31 V and stable power output efficiencies of up to 19.4%.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201803699</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D Ruddlesden–Popper ; 2D/3D perovskite heterostructure ; Absorbers ; Electric potential ; Energy conversion efficiency ; Energy gap ; Heterostructures ; metal halide perovskites ; Perovskites ; Photovoltaic cells ; photovoltaics ; Solar cells ; Spin coating ; wide bandgap</subject><ispartof>Advanced energy materials, 2019-06, Vol.9 (21), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4229-88683d4a59093be164c180e90ffef1bd7ad7f6e221216a2a3edc625cd940528b3</citedby><cites>FETCH-LOGICAL-c4229-88683d4a59093be164c180e90ffef1bd7ad7f6e221216a2a3edc625cd940528b3</cites><orcidid>0000-0001-9088-8944 ; 0000-0002-1557-8361 ; 0000-0003-3361-1054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201803699$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201803699$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gharibzadeh, Saba</creatorcontrib><creatorcontrib>Abdollahi Nejand, Bahram</creatorcontrib><creatorcontrib>Jakoby, Marius</creatorcontrib><creatorcontrib>Abzieher, Tobias</creatorcontrib><creatorcontrib>Hauschild, Dirk</creatorcontrib><creatorcontrib>Moghadamzadeh, Somayeh</creatorcontrib><creatorcontrib>Schwenzer, Jonas A.</creatorcontrib><creatorcontrib>Brenner, Philipp</creatorcontrib><creatorcontrib>Schmager, Raphael</creatorcontrib><creatorcontrib>Haghighirad, Amir Abbas</creatorcontrib><creatorcontrib>Weinhardt, Lothar</creatorcontrib><creatorcontrib>Lemmer, Uli</creatorcontrib><creatorcontrib>Richards, Bryce S.</creatorcontrib><creatorcontrib>Howard, Ian A.</creatorcontrib><creatorcontrib>Paetzold, Ulrich W.</creatorcontrib><title>Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure</title><title>Advanced energy materials</title><description>In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic−inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV.
By coating n‐butylammonium bromide on wide‐bandgap double‐cation perovskite absorber layers (EG ≈ 1.72 eV), a thin 2D Ruddlesden–Popper perovskite layer of intermediate phase is formed. The resulting heterostructure mitigates nonradiative recombination and enables a high open‐circuit voltage of up to 1.31 V and stable power output efficiencies of up to 19.4%.</description><subject>2D Ruddlesden–Popper</subject><subject>2D/3D perovskite heterostructure</subject><subject>Absorbers</subject><subject>Electric potential</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Heterostructures</subject><subject>metal halide perovskites</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>photovoltaics</subject><subject>Solar cells</subject><subject>Spin coating</subject><subject>wide bandgap</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIVKVXzpE4p_UjLx9LWihSoQgoHCM33lQuaRJsB1ROfALfyJfgqqhwYy_70Mzu7CB0SnCfYEwHAqp1n2KSYBZxfoA6JCKBHyUBPtzXjB6jnjEr7CLgBDPWQdUd5LWW3qyB6uvjM1U6b5X1HuvSiiV4T0qCG5-LSi5F492Crl_Ns7Lg3del0F4KZWm8uVWlelfV0qOjARv9hU3AusZY3ea21XCCjgpRGuj95C6aX4wf0ok_nV1epcOpnweUcj9JnFoZiJBjzhZAoiB3nwHHRQEFWchYyLiIgFJCSSSoYCDziIa55AEOabJgXXS229vo-qUFY7NV3erKncwoZUEShzEjDtXfoXIn0WgoskartdCbjOBsa2u2tTXb2-oIfEd4UyVs_kFnw_HN9S_3G9-ifjk</recordid><startdate>20190605</startdate><enddate>20190605</enddate><creator>Gharibzadeh, Saba</creator><creator>Abdollahi Nejand, Bahram</creator><creator>Jakoby, Marius</creator><creator>Abzieher, Tobias</creator><creator>Hauschild, Dirk</creator><creator>Moghadamzadeh, Somayeh</creator><creator>Schwenzer, Jonas A.</creator><creator>Brenner, Philipp</creator><creator>Schmager, Raphael</creator><creator>Haghighirad, Amir Abbas</creator><creator>Weinhardt, Lothar</creator><creator>Lemmer, Uli</creator><creator>Richards, Bryce S.</creator><creator>Howard, Ian A.</creator><creator>Paetzold, Ulrich W.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9088-8944</orcidid><orcidid>https://orcid.org/0000-0002-1557-8361</orcidid><orcidid>https://orcid.org/0000-0003-3361-1054</orcidid></search><sort><creationdate>20190605</creationdate><title>Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure</title><author>Gharibzadeh, Saba ; Abdollahi Nejand, Bahram ; Jakoby, Marius ; Abzieher, Tobias ; Hauschild, Dirk ; Moghadamzadeh, Somayeh ; Schwenzer, Jonas A. ; Brenner, Philipp ; Schmager, Raphael ; Haghighirad, Amir Abbas ; Weinhardt, Lothar ; Lemmer, Uli ; Richards, Bryce S. ; Howard, Ian A. ; Paetzold, Ulrich W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4229-88683d4a59093be164c180e90ffef1bd7ad7f6e221216a2a3edc625cd940528b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2D Ruddlesden–Popper</topic><topic>2D/3D perovskite heterostructure</topic><topic>Absorbers</topic><topic>Electric potential</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Heterostructures</topic><topic>metal halide perovskites</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>photovoltaics</topic><topic>Solar cells</topic><topic>Spin coating</topic><topic>wide bandgap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gharibzadeh, Saba</creatorcontrib><creatorcontrib>Abdollahi Nejand, Bahram</creatorcontrib><creatorcontrib>Jakoby, Marius</creatorcontrib><creatorcontrib>Abzieher, Tobias</creatorcontrib><creatorcontrib>Hauschild, Dirk</creatorcontrib><creatorcontrib>Moghadamzadeh, Somayeh</creatorcontrib><creatorcontrib>Schwenzer, Jonas A.</creatorcontrib><creatorcontrib>Brenner, Philipp</creatorcontrib><creatorcontrib>Schmager, Raphael</creatorcontrib><creatorcontrib>Haghighirad, Amir Abbas</creatorcontrib><creatorcontrib>Weinhardt, Lothar</creatorcontrib><creatorcontrib>Lemmer, Uli</creatorcontrib><creatorcontrib>Richards, Bryce S.</creatorcontrib><creatorcontrib>Howard, Ian A.</creatorcontrib><creatorcontrib>Paetzold, Ulrich W.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gharibzadeh, Saba</au><au>Abdollahi Nejand, Bahram</au><au>Jakoby, Marius</au><au>Abzieher, Tobias</au><au>Hauschild, Dirk</au><au>Moghadamzadeh, Somayeh</au><au>Schwenzer, Jonas A.</au><au>Brenner, Philipp</au><au>Schmager, Raphael</au><au>Haghighirad, Amir Abbas</au><au>Weinhardt, Lothar</au><au>Lemmer, Uli</au><au>Richards, Bryce S.</au><au>Howard, Ian A.</au><au>Paetzold, Ulrich W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure</atitle><jtitle>Advanced energy materials</jtitle><date>2019-06-05</date><risdate>2019</risdate><volume>9</volume><issue>21</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic−inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV.
By coating n‐butylammonium bromide on wide‐bandgap double‐cation perovskite absorber layers (EG ≈ 1.72 eV), a thin 2D Ruddlesden–Popper perovskite layer of intermediate phase is formed. The resulting heterostructure mitigates nonradiative recombination and enables a high open‐circuit voltage of up to 1.31 V and stable power output efficiencies of up to 19.4%.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201803699</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9088-8944</orcidid><orcidid>https://orcid.org/0000-0002-1557-8361</orcidid><orcidid>https://orcid.org/0000-0003-3361-1054</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2019-06, Vol.9 (21), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2234875731 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2D Ruddlesden–Popper 2D/3D perovskite heterostructure Absorbers Electric potential Energy conversion efficiency Energy gap Heterostructures metal halide perovskites Perovskites Photovoltaic cells photovoltaics Solar cells Spin coating wide bandgap |
title | Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Record%20Open%E2%80%90Circuit%20Voltage%20Wide%E2%80%90Bandgap%20Perovskite%20Solar%20Cells%20Utilizing%202D/3D%20Perovskite%20Heterostructure&rft.jtitle=Advanced%20energy%20materials&rft.au=Gharibzadeh,%20Saba&rft.date=2019-06-05&rft.volume=9&rft.issue=21&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201803699&rft_dat=%3Cproquest_cross%3E2234875731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234875731&rft_id=info:pmid/&rfr_iscdi=true |