On a Multilocus Wright-Fisher Model with Mutation and a Svirezhev-Shahshahani Gradient-like Selection Dynamics
In this paper we introduce a multilocus diffusion model of a population of \(N\) haploid, asexually reproducing individuals. The model includes parent-dependent mutation and interlocus selection, the latter limited to pairwise relationships but among a large number of simultaneous loci. The diffusio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce a multilocus diffusion model of a population of \(N\) haploid, asexually reproducing individuals. The model includes parent-dependent mutation and interlocus selection, the latter limited to pairwise relationships but among a large number of simultaneous loci. The diffusion is expressed as a system of stochastic differential equations (SDEs) that are coupled in the drift functions through a Shahshahani gradient-like structure for interlocus selection. The system of SDEs is derived from a sequence of Markov chains by weak convergence. We find the explicit stationary (invariant) density by solving the corresponding stationary Fokker-Planck equation under parent-independent mutation, i.e., Kingman's house-of-cards mutation. The density formula enables us to readily construct families of Wright-Fisher models corresponding to networks of loci. |
---|---|
ISSN: | 2331-8422 |