On a Multilocus Wright-Fisher Model with Mutation and a Svirezhev-Shahshahani Gradient-like Selection Dynamics

In this paper we introduce a multilocus diffusion model of a population of \(N\) haploid, asexually reproducing individuals. The model includes parent-dependent mutation and interlocus selection, the latter limited to pairwise relationships but among a large number of simultaneous loci. The diffusio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-12
Hauptverfasser: Aurell, Erik, Ekeberg, Magnus, Koski, Timo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce a multilocus diffusion model of a population of \(N\) haploid, asexually reproducing individuals. The model includes parent-dependent mutation and interlocus selection, the latter limited to pairwise relationships but among a large number of simultaneous loci. The diffusion is expressed as a system of stochastic differential equations (SDEs) that are coupled in the drift functions through a Shahshahani gradient-like structure for interlocus selection. The system of SDEs is derived from a sequence of Markov chains by weak convergence. We find the explicit stationary (invariant) density by solving the corresponding stationary Fokker-Planck equation under parent-independent mutation, i.e., Kingman's house-of-cards mutation. The density formula enables us to readily construct families of Wright-Fisher models corresponding to networks of loci.
ISSN:2331-8422