Tail risk measures and risk allocation for the class of multivariate normal mean–variance mixture distributions

The Conditional Tail Expectation (CTE), also known as the Expected Shortfall and Tail-VaR, has received much attention as a preferred risk measure in finance and insurance applications. A related risk management exercise is to allocate the amount of the CTE computed for the aggregate or portfolio ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2019-05, Vol.86, p.145-157
Hauptverfasser: Kim, Joseph H.T., Kim, So-Yeun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Conditional Tail Expectation (CTE), also known as the Expected Shortfall and Tail-VaR, has received much attention as a preferred risk measure in finance and insurance applications. A related risk management exercise is to allocate the amount of the CTE computed for the aggregate or portfolio risk into individual risk units, a procedure known as the CTE allocation. In this paper we derive analytic formulas of the CTE and its allocation for the class of multivariate normal mean–variance mixture (NMVM) distributions, which is known to be extremely flexible and contains many well-known special cases as its members. We also develop the closed-form expression of the conditional tail variance (CTV) for the NMVM class, an alternative risk measure proposed in the literature to supplement the CTE by capturing the tail variability of the underlying distribution. To illustrate our findings, we focus on the multivariate Generalized Hyperbolic Distribution (GHD) family which is a popular subclass of the NMVM in connection with Lévy processes and contains some common distributions for financial modelling. In addition, we also consider the multivariate slash distribution which is not a member of GHD family but still belongs to the NMVM class. Our result is an extension of the recent contribution of Ignatieva and Landsman (2015).
ISSN:0167-6687
1873-5959
DOI:10.1016/j.insmatheco.2019.02.010