Minimum cost noncrossing flow problem on layered networks

In this work we focus on an extension of the minimum cost flow problem in layered networks. Feasible arc flows must satisfy a specific compatibility restriction in addition to flow balance and capacity restrictions. Namely, at most one of the crossing arcs is allowed to have positive flow on it. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2019-05, Vol.261, p.2-21
Hauptverfasser: Altınel, İ. Kuban, Aras, Necati, Şuvak, Zeynep, Taşkın, Z. Caner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we focus on an extension of the minimum cost flow problem in layered networks. Feasible arc flows must satisfy a specific compatibility restriction in addition to flow balance and capacity restrictions. Namely, at most one of the crossing arcs is allowed to have positive flow on it. This variant of the minimum cost flow problem, which we call the minimum cost noncrossing flow problem, can frequently be encountered in real life. The determination of optimal temporal quay crane allocations to berthed vessels in container terminals, and optimal train schedules through the stations on the same railroad line are two examples. We first analyze the complexity of the problem and show that the noncrossing flow problem is in fact NP-complete in a layered network. Then, we introduce mixed-integer linear programming formulations and discuss a polynomially solvable special case. Next we show a sufficient condition for the existence of a crossing in an optimal solution, which can be used for preprocessing the arcs in order to reduce the problem size. Our computational experiments on a large test set show that our preprocessing algorithm can significantly reduce the number of arcs.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2018.09.016