Equitable coloring of hypergraphs

A hypergraph is equitably k-colorable if its vertices can be partitioned into k sets/color classes in such a way that monochromatic edges are avoided and the number of vertices in any two color classes differs by at most one. We prove that the problem of equitable 2-coloring of hypergraphs is NP-com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2019-05, Vol.261, p.186-192
Hauptverfasser: Furmańczyk, Hanna, Obszarski, Paweł
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A hypergraph is equitably k-colorable if its vertices can be partitioned into k sets/color classes in such a way that monochromatic edges are avoided and the number of vertices in any two color classes differs by at most one. We prove that the problem of equitable 2-coloring of hypergraphs is NP-complete even for 3-uniform hyperstars. Finally, we apply the method of dynamic programming for designing a polynomial-time algorithm to equitably k-color linear hypertrees, where k≥2 is fixed.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2019.01.016