A T1 theorem and Calderón–Zygmund operators in Campanato spaces on domains

Given a Lipschitz domain D⊂Rd, a Calderón–Zygmund operator T and a modulus of continuity ω(x), we solve the problem when the truncated operator TDf=T(fχD)χD sends the Campanato space Cω(D) into itself. The solution is a T1 type sufficient and necessary condition for the characteristic function χD of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2019-06, Vol.292 (6), p.1392-1407
1. Verfasser: Vasin, Andrei V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1407
container_issue 6
container_start_page 1392
container_title Mathematische Nachrichten
container_volume 292
creator Vasin, Andrei V.
description Given a Lipschitz domain D⊂Rd, a Calderón–Zygmund operator T and a modulus of continuity ω(x), we solve the problem when the truncated operator TDf=T(fχD)χD sends the Campanato space Cω(D) into itself. The solution is a T1 type sufficient and necessary condition for the characteristic function χD of D: (TχD)χD∈Cω∼(D),whereω∼(x)=ω(x)1+∫x1ω(t)dt/t. To check the hypotheses of T1 theorem we need extra restrictions on both the boundary of D and the operator T. It is proved that the truncated Calderón–Zygmund operator TD with an even kernel is bounded on Cω(D), provided D is a C1,ω∼‐smooth domain.
doi_str_mv 10.1002/mana.201700488
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2233856703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233856703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-46ef205dce9a12e9ee12a4d1139e5617e6e573b188bbbe5091cdbaf51b43f1a33</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI5uXQdcd8xNmrZZlsE_mNHNCOImpO2tdpgmNekgs_MdfBQfwTfxSewwoktXFy7fdw4cQk6BTYAxft4aayacQcpYnGV7ZASS84gnkOyT0QDISGbxwyE5CmHJGFMqTUZkntMF0P4ZnceWGlvRqVlV6D8_7Nfb--PmqV0PP9ehN73zgTZ2ANpuqOodDZ0pMVBnaeVa09hwTA5qswp48nPH5P7yYjG9jmZ3VzfTfBaVAtIsihOsOZNVicoAR4UI3MQVgFAoE0gxQZmKArKsKAqUTEFZFaaWUMSiBiPEmJztcjvvXtYYer10a2-HSs25EJlMUralJjuq9C4Ej7XufNMav9HA9HYyvZ1M_042CGonvDYr3PxD63l-m_-533TZcVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233856703</pqid></control><display><type>article</type><title>A T1 theorem and Calderón–Zygmund operators in Campanato spaces on domains</title><source>Wiley Online Library All Journals</source><creator>Vasin, Andrei V.</creator><creatorcontrib>Vasin, Andrei V.</creatorcontrib><description>Given a Lipschitz domain D⊂Rd, a Calderón–Zygmund operator T and a modulus of continuity ω(x), we solve the problem when the truncated operator TDf=T(fχD)χD sends the Campanato space Cω(D) into itself. The solution is a T1 type sufficient and necessary condition for the characteristic function χD of D: (TχD)χD∈Cω∼(D),whereω∼(x)=ω(x)1+∫x1ω(t)dt/t. To check the hypotheses of T1 theorem we need extra restrictions on both the boundary of D and the operator T. It is proved that the truncated Calderón–Zygmund operator TD with an even kernel is bounded on Cω(D), provided D is a C1,ω∼‐smooth domain.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201700488</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>42B20 ; Campanato spaces ; Characteristic functions ; Domains ; Operators (mathematics) ; T1 theorem ; Theorems ; truncated Calderón–Zygmund operators</subject><ispartof>Mathematische Nachrichten, 2019-06, Vol.292 (6), p.1392-1407</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-46ef205dce9a12e9ee12a4d1139e5617e6e573b188bbbe5091cdbaf51b43f1a33</citedby><cites>FETCH-LOGICAL-c3178-46ef205dce9a12e9ee12a4d1139e5617e6e573b188bbbe5091cdbaf51b43f1a33</cites><orcidid>0000-0003-2810-7849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201700488$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201700488$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Vasin, Andrei V.</creatorcontrib><title>A T1 theorem and Calderón–Zygmund operators in Campanato spaces on domains</title><title>Mathematische Nachrichten</title><description>Given a Lipschitz domain D⊂Rd, a Calderón–Zygmund operator T and a modulus of continuity ω(x), we solve the problem when the truncated operator TDf=T(fχD)χD sends the Campanato space Cω(D) into itself. The solution is a T1 type sufficient and necessary condition for the characteristic function χD of D: (TχD)χD∈Cω∼(D),whereω∼(x)=ω(x)1+∫x1ω(t)dt/t. To check the hypotheses of T1 theorem we need extra restrictions on both the boundary of D and the operator T. It is proved that the truncated Calderón–Zygmund operator TD with an even kernel is bounded on Cω(D), provided D is a C1,ω∼‐smooth domain.</description><subject>42B20</subject><subject>Campanato spaces</subject><subject>Characteristic functions</subject><subject>Domains</subject><subject>Operators (mathematics)</subject><subject>T1 theorem</subject><subject>Theorems</subject><subject>truncated Calderón–Zygmund operators</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI5uXQdcd8xNmrZZlsE_mNHNCOImpO2tdpgmNekgs_MdfBQfwTfxSewwoktXFy7fdw4cQk6BTYAxft4aayacQcpYnGV7ZASS84gnkOyT0QDISGbxwyE5CmHJGFMqTUZkntMF0P4ZnceWGlvRqVlV6D8_7Nfb--PmqV0PP9ehN73zgTZ2ANpuqOodDZ0pMVBnaeVa09hwTA5qswp48nPH5P7yYjG9jmZ3VzfTfBaVAtIsihOsOZNVicoAR4UI3MQVgFAoE0gxQZmKArKsKAqUTEFZFaaWUMSiBiPEmJztcjvvXtYYer10a2-HSs25EJlMUralJjuq9C4Ej7XufNMav9HA9HYyvZ1M_042CGonvDYr3PxD63l-m_-533TZcVw</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Vasin, Andrei V.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2810-7849</orcidid></search><sort><creationdate>201906</creationdate><title>A T1 theorem and Calderón–Zygmund operators in Campanato spaces on domains</title><author>Vasin, Andrei V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-46ef205dce9a12e9ee12a4d1139e5617e6e573b188bbbe5091cdbaf51b43f1a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>42B20</topic><topic>Campanato spaces</topic><topic>Characteristic functions</topic><topic>Domains</topic><topic>Operators (mathematics)</topic><topic>T1 theorem</topic><topic>Theorems</topic><topic>truncated Calderón–Zygmund operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasin, Andrei V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasin, Andrei V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A T1 theorem and Calderón–Zygmund operators in Campanato spaces on domains</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2019-06</date><risdate>2019</risdate><volume>292</volume><issue>6</issue><spage>1392</spage><epage>1407</epage><pages>1392-1407</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>Given a Lipschitz domain D⊂Rd, a Calderón–Zygmund operator T and a modulus of continuity ω(x), we solve the problem when the truncated operator TDf=T(fχD)χD sends the Campanato space Cω(D) into itself. The solution is a T1 type sufficient and necessary condition for the characteristic function χD of D: (TχD)χD∈Cω∼(D),whereω∼(x)=ω(x)1+∫x1ω(t)dt/t. To check the hypotheses of T1 theorem we need extra restrictions on both the boundary of D and the operator T. It is proved that the truncated Calderón–Zygmund operator TD with an even kernel is bounded on Cω(D), provided D is a C1,ω∼‐smooth domain.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201700488</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2810-7849</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2019-06, Vol.292 (6), p.1392-1407
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_2233856703
source Wiley Online Library All Journals
subjects 42B20
Campanato spaces
Characteristic functions
Domains
Operators (mathematics)
T1 theorem
Theorems
truncated Calderón–Zygmund operators
title A T1 theorem and Calderón–Zygmund operators in Campanato spaces on domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20T1%20theorem%20and%20Calder%C3%B3n%E2%80%93Zygmund%20operators%20in%20Campanato%20spaces%20on%20domains&rft.jtitle=Mathematische%20Nachrichten&rft.au=Vasin,%20Andrei%20V.&rft.date=2019-06&rft.volume=292&rft.issue=6&rft.spage=1392&rft.epage=1407&rft.pages=1392-1407&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201700488&rft_dat=%3Cproquest_cross%3E2233856703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233856703&rft_id=info:pmid/&rfr_iscdi=true