A T1 theorem and Calderón–Zygmund operators in Campanato spaces on domains
Given a Lipschitz domain D⊂Rd, a Calderón–Zygmund operator T and a modulus of continuity ω(x), we solve the problem when the truncated operator TDf=T(fχD)χD sends the Campanato space Cω(D) into itself. The solution is a T1 type sufficient and necessary condition for the characteristic function χD of...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2019-06, Vol.292 (6), p.1392-1407 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a Lipschitz domain D⊂Rd, a Calderón–Zygmund operator T and a modulus of continuity ω(x), we solve the problem when the truncated operator TDf=T(fχD)χD sends the Campanato space Cω(D) into itself. The solution is a T1 type sufficient and necessary condition for the characteristic function χD of D:
(TχD)χD∈Cω∼(D),whereω∼(x)=ω(x)1+∫x1ω(t)dt/t.
To check the hypotheses of T1 theorem we need extra restrictions on both the boundary of D and the operator T. It is proved that the truncated Calderón–Zygmund operator TD with an even kernel is bounded on Cω(D), provided D is a C1,ω∼‐smooth domain. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201700488 |