A T1 theorem and Calderón–Zygmund operators in Campanato spaces on domains

Given a Lipschitz domain D⊂Rd, a Calderón–Zygmund operator T and a modulus of continuity ω(x), we solve the problem when the truncated operator TDf=T(fχD)χD sends the Campanato space Cω(D) into itself. The solution is a T1 type sufficient and necessary condition for the characteristic function χD of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2019-06, Vol.292 (6), p.1392-1407
1. Verfasser: Vasin, Andrei V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a Lipschitz domain D⊂Rd, a Calderón–Zygmund operator T and a modulus of continuity ω(x), we solve the problem when the truncated operator TDf=T(fχD)χD sends the Campanato space Cω(D) into itself. The solution is a T1 type sufficient and necessary condition for the characteristic function χD of D: (TχD)χD∈Cω∼(D),whereω∼(x)=ω(x)1+∫x1ω(t)dt/t. To check the hypotheses of T1 theorem we need extra restrictions on both the boundary of D and the operator T. It is proved that the truncated Calderón–Zygmund operator TD with an even kernel is bounded on Cω(D), provided D is a C1,ω∼‐smooth domain.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201700488