Creating sentiment lexicon for sentiment analysis in Urdu: The case of a resource‐poor language

The sentiment analysis (SA) applications are becoming popular among the individuals and organizations for gathering and analysing user's sentiments about products, services, policies, and current affairs. Due to the availability of a wide range of English lexical resources, such as part‐of‐spee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems 2019-06, Vol.36 (3), p.n/a
Hauptverfasser: Asghar, Muhammad Zubair, Sattar, Anum, Khan, Aurangzeb, Ali, Amjad, Masud Kundi, Fazal, Ahmad, Shakeel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sentiment analysis (SA) applications are becoming popular among the individuals and organizations for gathering and analysing user's sentiments about products, services, policies, and current affairs. Due to the availability of a wide range of English lexical resources, such as part‐of‐speech taggers, parsers, and polarity lexicons, development of sophisticated SA applications for the English language has attracted many researchers. Although there have been efforts for creating polarity lexicons in non‐English languages such as Urdu, they suffer from many deficiencies, such as lack of publically available sentiment lexicons with a proper scoring mechanism of opinion words and modifiers. In this work, we present a word‐level translation scheme for creating a first comprehensive Urdu polarity resource: “Urdu Lexicon” using a merger of existing resources: list of English opinion words, SentiWordNet, English–Urdu bilingual dictionary, and a collection of Urdu modifiers. We assign two polarity scores, positive and negative, to each Urdu opinion word. Moreover, modifiers are collected, classified, and tagged with proper polarity scores. We also perform an extrinsic evaluation in terms of subjectivity detection and sentiment classification, and the evaluation results show that the polarity scores assigned by this technique are more accurate than the baseline methods.
ISSN:0266-4720
1468-0394
DOI:10.1111/exsy.12397