Improving Energy Metabolism of Deproteinized Extract of Calf Blood Through Regulation of Hmgcs2, Cpt1a, Angptl4, Cyp8b1, and Ehhadh Genes in Mice
Herein, we described the physicochemical properties of deproteinized extract of calf blood(DECB) and established a hypoxia model treated with or without DECB to detect the sugar, lactic acid, protein, and ATP contents of mice and then identified and analyzed the differentially expressed genes betwee...
Gespeichert in:
Veröffentlicht in: | Chemical research in Chinese universities 2019-06, Vol.35 (3), p.427-433 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein, we described the physicochemical properties of deproteinized extract of calf blood(DECB) and established a hypoxia model treated with or without DECB to detect the sugar, lactic acid, protein, and ATP contents of mice and then identified and analyzed the differentially expressed genes between two groups using mRNA expression chip. According to the results of the airtight hypoxia experiment, mice in the model+DECB group had a significantly prolonged time of hypoxia tolerance compared with the model group. The biochemical test indicated that DECB could significantly increase the level of sugar, ATP and proteins and reduce the amount of lactic acid in mice. It also revealed that
Hmgcs2
,
Cpt1a
,
Angptl4
,
Cyp8b1
, and
Ehhadh
genes were involved in mice energy metabolism, and were closely associated with metabolic signaling pathway. These results suggest that DECB might be a potential drug to treat metabolic diseases. Among the genes with differential expression under hypoxia,
Angptl4
,
Cyp8b1
, and
Ehhadh
were critical factors for sugar metabolism.
Hmgcs2
provided energy directly, and
Cptla
regulated cellular inflammatory responses, promoting energy metabolism. |
---|---|
ISSN: | 1005-9040 2210-3171 |
DOI: | 10.1007/s40242-019-9021-9 |