Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture
Let $\mathcal{M}$ be a semi-finite von Neumann algebra and let $f:{\Bbb R}\rightarrow{\Bbb C}$ be a Lipschitz function. If $A,B\in\mathcal{M}$ are self-adjoint operators such that $[A,B]\in L_1(\mathcal{M})$, then$$\big\|[f(A),B]\big\|_{1,\infty}\leq c_{abs}\|f^\prime\|_{\infty}\big\|[A,B]\big\|_1,$...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2019-06, Vol.141 (3), p.593-610 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 610 |
---|---|
container_issue | 3 |
container_start_page | 593 |
container_title | American journal of mathematics |
container_volume | 141 |
creator | Caspers, M Potapov, D Sukochev, F Zanin, D |
description | Let $\mathcal{M}$ be a semi-finite von Neumann algebra and let $f:{\Bbb R}\rightarrow{\Bbb C}$ be a Lipschitz function. If $A,B\in\mathcal{M}$ are self-adjoint operators such that $[A,B]\in L_1(\mathcal{M})$, then$$\big\|[f(A),B]\big\|_{1,\infty}\leq c_{abs}\|f^\prime\|_{\infty}\big\|[A,B]\big\|_1,$$where $c_{abs}$ is an absolute constant independent of $f$, $\mathcal{M}$ and $A,B$ and $\|\cdot\|_{1,\infty}$ denotes the weak $L_1$-norm. If $X,Y\in\mathcal{M}$ are self-adjoint operators such that $X-Y\in L_1(\mathcal{M})$, then$$\big\|f(X)-f(Y)\big\|_{1,\infty}\leq c_{abs}\|f^\prime\|_{\infty}\|X-Y\|_1.$$This result resolves a conjecture raised by F. Nazarov and V. Peller implying a couple of existing results in perturbation theory. |
doi_str_mv | 10.1353/ajm.2019.0019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2233077630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233077630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-c77cfe8a262b2d3137da942ee62dfc7daeb7cdc01c55baf2678cebc5d28a05353</originalsourceid><addsrcrecordid>eNpFkM1LxDAQxYMouK4evQc8d50mbdP1JuIXLCqoqKeQplO2tW1qkgq7f70pK3qZYeDNm3k_Qk5jWMQ85eeq6RYM4uUCQtkjsxhyiDIuxD6ZAQCLlpyJQ3LkXBNGEMBm5OMN1Sf1mwGpNl03euWNpaov6aoenF7XfkvR-bpTHt0FtehMO_ra9NRU1K-RPqitsuY7esK2RRtM-ga1Hy0ek4NKtQ5PfvucvN5cv1zdRavH2_ury1WkWQI-0kLoCnPFMlawksdclGqZMMSMlZUOAxZClxpinaaFqlgmco2FTkuWK0hD7Dk52_kO1nyN4VfZmNH24aRkjHMQIuMQVNFOpa1xzmIlBxtC2Y2MQU70ZKAnJ3pyohf0yZ_rFKgbHf4bC5bEWSafJ8IT4LAQgKbv_AeeMnTP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233077630</pqid></control><display><type>article</type><title>Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture</title><source>Project Muse Premium Collection</source><creator>Caspers, M ; Potapov, D ; Sukochev, F ; Zanin, D</creator><creatorcontrib>Caspers, M ; Potapov, D ; Sukochev, F ; Zanin, D</creatorcontrib><description>Let $\mathcal{M}$ be a semi-finite von Neumann algebra and let $f:{\Bbb R}\rightarrow{\Bbb C}$ be a Lipschitz function. If $A,B\in\mathcal{M}$ are self-adjoint operators such that $[A,B]\in L_1(\mathcal{M})$, then$$\big\|[f(A),B]\big\|_{1,\infty}\leq c_{abs}\|f^\prime\|_{\infty}\big\|[A,B]\big\|_1,$$where $c_{abs}$ is an absolute constant independent of $f$, $\mathcal{M}$ and $A,B$ and $\|\cdot\|_{1,\infty}$ denotes the weak $L_1$-norm. If $X,Y\in\mathcal{M}$ are self-adjoint operators such that $X-Y\in L_1(\mathcal{M})$, then$$\big\|f(X)-f(Y)\big\|_{1,\infty}\leq c_{abs}\|f^\prime\|_{\infty}\|X-Y\|_1.$$This result resolves a conjecture raised by F. Nazarov and V. Peller implying a couple of existing results in perturbation theory.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2019.0019</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Commutators ; Operators (mathematics) ; Perturbation theory</subject><ispartof>American journal of mathematics, 2019-06, Vol.141 (3), p.593-610</ispartof><rights>Copyright © The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Jun 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c240t-c77cfe8a262b2d3137da942ee62dfc7daeb7cdc01c55baf2678cebc5d28a05353</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://muse.jhu.edu/article/724166/pdf$$EPDF$$P50$$Gprojectmuse$$H</linktopdf><linktohtml>$$Uhttps://muse.jhu.edu/article/724166$$EHTML$$P50$$Gprojectmuse$$H</linktohtml><link.rule.ids>314,780,784,21127,27924,27925,56842,57402</link.rule.ids></links><search><creatorcontrib>Caspers, M</creatorcontrib><creatorcontrib>Potapov, D</creatorcontrib><creatorcontrib>Sukochev, F</creatorcontrib><creatorcontrib>Zanin, D</creatorcontrib><title>Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture</title><title>American journal of mathematics</title><description>Let $\mathcal{M}$ be a semi-finite von Neumann algebra and let $f:{\Bbb R}\rightarrow{\Bbb C}$ be a Lipschitz function. If $A,B\in\mathcal{M}$ are self-adjoint operators such that $[A,B]\in L_1(\mathcal{M})$, then$$\big\|[f(A),B]\big\|_{1,\infty}\leq c_{abs}\|f^\prime\|_{\infty}\big\|[A,B]\big\|_1,$$where $c_{abs}$ is an absolute constant independent of $f$, $\mathcal{M}$ and $A,B$ and $\|\cdot\|_{1,\infty}$ denotes the weak $L_1$-norm. If $X,Y\in\mathcal{M}$ are self-adjoint operators such that $X-Y\in L_1(\mathcal{M})$, then$$\big\|f(X)-f(Y)\big\|_{1,\infty}\leq c_{abs}\|f^\prime\|_{\infty}\|X-Y\|_1.$$This result resolves a conjecture raised by F. Nazarov and V. Peller implying a couple of existing results in perturbation theory.</description><subject>Commutators</subject><subject>Operators (mathematics)</subject><subject>Perturbation theory</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM1LxDAQxYMouK4evQc8d50mbdP1JuIXLCqoqKeQplO2tW1qkgq7f70pK3qZYeDNm3k_Qk5jWMQ85eeq6RYM4uUCQtkjsxhyiDIuxD6ZAQCLlpyJQ3LkXBNGEMBm5OMN1Sf1mwGpNl03euWNpaov6aoenF7XfkvR-bpTHt0FtehMO_ra9NRU1K-RPqitsuY7esK2RRtM-ga1Hy0ek4NKtQ5PfvucvN5cv1zdRavH2_ury1WkWQI-0kLoCnPFMlawksdclGqZMMSMlZUOAxZClxpinaaFqlgmco2FTkuWK0hD7Dk52_kO1nyN4VfZmNH24aRkjHMQIuMQVNFOpa1xzmIlBxtC2Y2MQU70ZKAnJ3pyohf0yZ_rFKgbHf4bC5bEWSafJ8IT4LAQgKbv_AeeMnTP</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Caspers, M</creator><creator>Potapov, D</creator><creator>Sukochev, F</creator><creator>Zanin, D</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190601</creationdate><title>Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture</title><author>Caspers, M ; Potapov, D ; Sukochev, F ; Zanin, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-c77cfe8a262b2d3137da942ee62dfc7daeb7cdc01c55baf2678cebc5d28a05353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Commutators</topic><topic>Operators (mathematics)</topic><topic>Perturbation theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caspers, M</creatorcontrib><creatorcontrib>Potapov, D</creatorcontrib><creatorcontrib>Sukochev, F</creatorcontrib><creatorcontrib>Zanin, D</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caspers, M</au><au>Potapov, D</au><au>Sukochev, F</au><au>Zanin, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture</atitle><jtitle>American journal of mathematics</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>141</volume><issue>3</issue><spage>593</spage><epage>610</epage><pages>593-610</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>Let $\mathcal{M}$ be a semi-finite von Neumann algebra and let $f:{\Bbb R}\rightarrow{\Bbb C}$ be a Lipschitz function. If $A,B\in\mathcal{M}$ are self-adjoint operators such that $[A,B]\in L_1(\mathcal{M})$, then$$\big\|[f(A),B]\big\|_{1,\infty}\leq c_{abs}\|f^\prime\|_{\infty}\big\|[A,B]\big\|_1,$$where $c_{abs}$ is an absolute constant independent of $f$, $\mathcal{M}$ and $A,B$ and $\|\cdot\|_{1,\infty}$ denotes the weak $L_1$-norm. If $X,Y\in\mathcal{M}$ are self-adjoint operators such that $X-Y\in L_1(\mathcal{M})$, then$$\big\|f(X)-f(Y)\big\|_{1,\infty}\leq c_{abs}\|f^\prime\|_{\infty}\|X-Y\|_1.$$This result resolves a conjecture raised by F. Nazarov and V. Peller implying a couple of existing results in perturbation theory.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2019.0019</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2019-06, Vol.141 (3), p.593-610 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_2233077630 |
source | Project Muse Premium Collection |
subjects | Commutators Operators (mathematics) Perturbation theory |
title | Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20type%20commutator%20and%20Lipschitz%20estimates:%20resolution%20of%20the%20Nazarov-Peller%20conjecture&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Caspers,%20M&rft.date=2019-06-01&rft.volume=141&rft.issue=3&rft.spage=593&rft.epage=610&rft.pages=593-610&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2019.0019&rft_dat=%3Cproquest_cross%3E2233077630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233077630&rft_id=info:pmid/&rfr_iscdi=true |