Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture
Let $\mathcal{M}$ be a semi-finite von Neumann algebra and let $f:{\Bbb R}\rightarrow{\Bbb C}$ be a Lipschitz function. If $A,B\in\mathcal{M}$ are self-adjoint operators such that $[A,B]\in L_1(\mathcal{M})$, then$$\big\|[f(A),B]\big\|_{1,\infty}\leq c_{abs}\|f^\prime\|_{\infty}\big\|[A,B]\big\|_1,$...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2019-06, Vol.141 (3), p.593-610 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\mathcal{M}$ be a semi-finite von Neumann algebra and let $f:{\Bbb R}\rightarrow{\Bbb C}$ be a Lipschitz function. If $A,B\in\mathcal{M}$ are self-adjoint operators such that $[A,B]\in L_1(\mathcal{M})$, then$$\big\|[f(A),B]\big\|_{1,\infty}\leq c_{abs}\|f^\prime\|_{\infty}\big\|[A,B]\big\|_1,$$where $c_{abs}$ is an absolute constant independent of $f$, $\mathcal{M}$ and $A,B$ and $\|\cdot\|_{1,\infty}$ denotes the weak $L_1$-norm. If $X,Y\in\mathcal{M}$ are self-adjoint operators such that $X-Y\in L_1(\mathcal{M})$, then$$\big\|f(X)-f(Y)\big\|_{1,\infty}\leq c_{abs}\|f^\prime\|_{\infty}\|X-Y\|_1.$$This result resolves a conjecture raised by F. Nazarov and V. Peller implying a couple of existing results in perturbation theory. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.2019.0019 |