The Multi-Lane Capsule Network

We introduce multi-lane capsule networks (MLCN), which are a separable and resource efficient organization of capsule networks (CapsNet) that allows parallel processing while achieving high accuracy at reduced cost. A MLCN is composed of a number of (distinct) parallel lanes, each contributing to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2019-07, Vol.26 (7), p.1006-1010
Hauptverfasser: do Rosario, Vanderson Martins, Borin, Edson, Breternitz, Mauricio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce multi-lane capsule networks (MLCN), which are a separable and resource efficient organization of capsule networks (CapsNet) that allows parallel processing while achieving high accuracy at reduced cost. A MLCN is composed of a number of (distinct) parallel lanes, each contributing to a dimension of the result, trained using the routing-by-agreement organization of CapsNet. Our results indicate similar accuracy with a much-reduced cost in number of parameters for the Fashion-MNIST and Cifar10 datasets. They also indicate that the MLCN outperforms the original CapsNet when using a proposed novel configuration for the lanes. MLCN also has faster training and inference times, being more than two-fold faster than the original CapsNet in a same accelerator.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2019.2915661