An inequality for the length of isoptic chords of convex bodies

In this note we prove the following result: for every α ∈ ( 0 , π ) and for a given convex body K in the plane, with minimal width w , there exists a chord [ x ,  y ] with length larger than or equal to w cos α 2 such that there are support lines of K through x and y which form an angle α . Moreover...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aequationes mathematicae 2019-06, Vol.93 (3), p.619-628
Hauptverfasser: Jerónimo-Castro, Jesús, Yee-Romero, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note we prove the following result: for every α ∈ ( 0 , π ) and for a given convex body K in the plane, with minimal width w , there exists a chord [ x ,  y ] with length larger than or equal to w cos α 2 such that there are support lines of K through x and y which form an angle α . Moreover, if there is no such chord with length exceeding w cos α 2 , then K is a Euclidean disc.
ISSN:0001-9054
1420-8903
DOI:10.1007/s00010-018-0611-2