An inequality for the length of isoptic chords of convex bodies
In this note we prove the following result: for every α ∈ ( 0 , π ) and for a given convex body K in the plane, with minimal width w , there exists a chord [ x , y ] with length larger than or equal to w cos α 2 such that there are support lines of K through x and y which form an angle α . Moreover...
Gespeichert in:
Veröffentlicht in: | Aequationes mathematicae 2019-06, Vol.93 (3), p.619-628 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note we prove the following result: for every
α
∈
(
0
,
π
)
and for a given convex body
K
in the plane, with minimal width
w
, there exists a chord [
x
,
y
] with length larger than or equal to
w
cos
α
2
such that there are support lines of
K
through
x
and
y
which form an angle
α
.
Moreover, if there is no such chord with length exceeding
w
cos
α
2
, then
K
is a Euclidean disc. |
---|---|
ISSN: | 0001-9054 1420-8903 |
DOI: | 10.1007/s00010-018-0611-2 |