Chitosan-Acrylic Polymeric Nanoparticles with Dynamic Covalent Bonds. Synthesis and Stimuli Behavior
Drug delivery represents one of the most important research fields within the pharmaceutical industry. Different strategies are reported every day in a dynamic search for carriers with the ability to transport drugs across the body, avoiding or decreasing toxic issues and improving therapeutic activ...
Gespeichert in:
Veröffentlicht in: | Chemical & pharmaceutical bulletin 2017/12/01, Vol.65(12), pp.1132-1143 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Drug delivery represents one of the most important research fields within the pharmaceutical industry. Different strategies are reported every day in a dynamic search for carriers with the ability to transport drugs across the body, avoiding or decreasing toxic issues and improving therapeutic activity. One of the most interesting strategies currently under research is the development of drug delivery systems sensitive to different stimuli, due to the high potential attributed to the selective delivery of the payload. In this work, a stimuli-sensitive nanocarrier was built with a bifunctional acrylic polymer, linked by imine and disulfide bonds to thiolate chitosan, the latter being a biopolymer widely known in the field of tissue engineering and drug delivery by its biodegradability and biocompatibility. These polymer nanoparticles were exposed to different changes in pH and redox potential, which are environments commonly found inside cancer cells. The results proof the ability of the nanoparticles to keep the original structure when either changes in pH or redox potential were applied individually. However, when both stimuli were applied simultaneously, a disassembly of the nanoparticles was evident. These special characteristics make these nanoparticles suitable nanocarriers with potential for the selective delivery of anticancer drugs. |
---|---|
ISSN: | 0009-2363 1347-5223 |
DOI: | 10.1248/cpb.c17-00624 |