Nonlocal Approximations to Fokker-Planck Equations
We show that solutions to a classical Fokker-Plank equation can be approximated by solutions to nonlocal evolution problems when a rescaling parameter that controls the size of the nonlocality goes to zero.
Gespeichert in:
Veröffentlicht in: | Funkcialaj Ekvacioj 2019, Vol.62(1), pp.35-60 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Funkcialaj Ekvacioj |
container_volume | 62 |
creator | Molino, Alexis Rossi, Julio D. |
description | We show that solutions to a classical Fokker-Plank equation can be approximated by solutions to nonlocal evolution problems when a rescaling parameter that controls the size of the nonlocality goes to zero. |
doi_str_mv | 10.1619/fesi.62.35 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2232142941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232142941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-21c4ed9c2a5dd4709e18b9eebd864fdf02b0a38bbee5735a47de53eecfab068e3</originalsourceid><addsrcrecordid>eNo90EtLxDAQAOAcFFxXL_6CgjehNZkkfRw8LMuuCot60HNI06n2YdNNWtB_b5dKTwMzH_Mi5IbRiMUsuy_RV1EMEZdnZEUlhzBNgF2QS-9rSjlICisCL7ZrrdFtsOl7Z3-qbz1UtvPBYIO9bRp04VurO9MEu-M4l67Iealbj9f_cU0-9rv37VN4eH183m4OoREJDCEwI7DIDGhZFCKhGbI0zxDzIo1FWZQUcqp5mueIMuFSi6RAyRFNqXMap8jX5HbuO-11HNEPqraj66aRCoADE5AJNqm7WRlnvXdYqt5NR7hfxag6_UGd_qBiUFxO-GHGtR_0Jy5Uu6EyLS6UzX7Jmy_tFHb8D2qaahM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232142941</pqid></control><display><type>article</type><title>Nonlocal Approximations to Fokker-Planck Equations</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Molino, Alexis ; Rossi, Julio D.</creator><creatorcontrib>Molino, Alexis ; Rossi, Julio D.</creatorcontrib><description>We show that solutions to a classical Fokker-Plank equation can be approximated by solutions to nonlocal evolution problems when a rescaling parameter that controls the size of the nonlocality goes to zero.</description><identifier>ISSN: 0532-8721</identifier><identifier>DOI: 10.1619/fesi.62.35</identifier><language>eng</language><publisher>Tokyo: Division of Functional Equations, The Mathematical Society of Japan</publisher><subject>Nonlocal evolution equations ; Parabolic problems ; Rescaling</subject><ispartof>Funkcialaj Ekvacioj, 2019, Vol.62(1), pp.35-60</ispartof><rights>2019 by the Division of Functional Equations, The Mathematical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-21c4ed9c2a5dd4709e18b9eebd864fdf02b0a38bbee5735a47de53eecfab068e3</citedby><cites>FETCH-LOGICAL-c472t-21c4ed9c2a5dd4709e18b9eebd864fdf02b0a38bbee5735a47de53eecfab068e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Molino, Alexis</creatorcontrib><creatorcontrib>Rossi, Julio D.</creatorcontrib><title>Nonlocal Approximations to Fokker-Planck Equations</title><title>Funkcialaj Ekvacioj</title><addtitle>FE</addtitle><description>We show that solutions to a classical Fokker-Plank equation can be approximated by solutions to nonlocal evolution problems when a rescaling parameter that controls the size of the nonlocality goes to zero.</description><subject>Nonlocal evolution equations</subject><subject>Parabolic problems</subject><subject>Rescaling</subject><issn>0532-8721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo90EtLxDAQAOAcFFxXL_6CgjehNZkkfRw8LMuuCot60HNI06n2YdNNWtB_b5dKTwMzH_Mi5IbRiMUsuy_RV1EMEZdnZEUlhzBNgF2QS-9rSjlICisCL7ZrrdFtsOl7Z3-qbz1UtvPBYIO9bRp04VurO9MEu-M4l67Iealbj9f_cU0-9rv37VN4eH183m4OoREJDCEwI7DIDGhZFCKhGbI0zxDzIo1FWZQUcqp5mueIMuFSi6RAyRFNqXMap8jX5HbuO-11HNEPqraj66aRCoADE5AJNqm7WRlnvXdYqt5NR7hfxag6_UGd_qBiUFxO-GHGtR_0Jy5Uu6EyLS6UzX7Jmy_tFHb8D2qaahM</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Molino, Alexis</creator><creator>Rossi, Julio D.</creator><general>Division of Functional Equations, The Mathematical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2019</creationdate><title>Nonlocal Approximations to Fokker-Planck Equations</title><author>Molino, Alexis ; Rossi, Julio D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-21c4ed9c2a5dd4709e18b9eebd864fdf02b0a38bbee5735a47de53eecfab068e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Nonlocal evolution equations</topic><topic>Parabolic problems</topic><topic>Rescaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molino, Alexis</creatorcontrib><creatorcontrib>Rossi, Julio D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Funkcialaj Ekvacioj</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molino, Alexis</au><au>Rossi, Julio D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlocal Approximations to Fokker-Planck Equations</atitle><jtitle>Funkcialaj Ekvacioj</jtitle><addtitle>FE</addtitle><date>2019</date><risdate>2019</risdate><volume>62</volume><issue>1</issue><spage>35</spage><epage>60</epage><pages>35-60</pages><issn>0532-8721</issn><abstract>We show that solutions to a classical Fokker-Plank equation can be approximated by solutions to nonlocal evolution problems when a rescaling parameter that controls the size of the nonlocality goes to zero.</abstract><cop>Tokyo</cop><pub>Division of Functional Equations, The Mathematical Society of Japan</pub><doi>10.1619/fesi.62.35</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0532-8721 |
ispartof | Funkcialaj Ekvacioj, 2019, Vol.62(1), pp.35-60 |
issn | 0532-8721 |
language | eng |
recordid | cdi_proquest_journals_2232142941 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Nonlocal evolution equations Parabolic problems Rescaling |
title | Nonlocal Approximations to Fokker-Planck Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlocal%20Approximations%20to%20Fokker-Planck%20Equations&rft.jtitle=Funkcialaj%20Ekvacioj&rft.au=Molino,%20Alexis&rft.date=2019&rft.volume=62&rft.issue=1&rft.spage=35&rft.epage=60&rft.pages=35-60&rft.issn=0532-8721&rft_id=info:doi/10.1619/fesi.62.35&rft_dat=%3Cproquest_cross%3E2232142941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232142941&rft_id=info:pmid/&rfr_iscdi=true |