The conjugate locus on convex surfaces
The conjugate locus of a point on a surface is the envelope of geodesics emanating radially from that point. In this paper we show that the conjugate loci of generic points on convex surfaces satisfy a simple relationship between the rotation index and the number of cusps. As a consequence we prove...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2019-06, Vol.200 (1), p.241-254 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 1 |
container_start_page | 241 |
container_title | Geometriae dedicata |
container_volume | 200 |
creator | Waters, Thomas |
description | The conjugate locus of a point on a surface is the envelope of geodesics emanating radially from that point. In this paper we show that the conjugate loci of generic points on convex surfaces satisfy a simple relationship between the rotation index and the number of cusps. As a consequence we prove the ‘vierspitzensatz’: the conjugate locus of a generic point on a convex surface must have at least four cusps. Along the way we prove certain results about evolutes in the plane and we extend the discussion to the existence of ‘smooth loops’ and geodesic curvature. |
doi_str_mv | 10.1007/s10711-018-0368-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2231982797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231982797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b9ab83167f42f273dc8570f6893ee00d8ae4c75ff38613aaa2ca5107b6f423c63</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC4C06kzRfRylahYKXeg7ZNKmWuqnJrui_N2UFT54Ghvd5Z3gIuUS4QQB1WxAUIgXUFLjUVB-RCQrFqEGpj8kEYCapUEKckrNStgBglGITcr16DY1P3XbYuD40u-SH0qTusPoMX00ZcnQ-lHNyEt2uhIvfOSUvD_er-SNdPi-e5ndL6rkwPW2NazVHqeKMRab42muhIEpteAgAa-3CzCsRI9cSuXOOeSfq562sAPeST8nV2LvP6WMIpbfbNOSunrSMcTSaKaNqCseUz6mUHKLd57d3l78tgj3osKMOW3XYgw6rK8NGptRstwn5r_l_6Acut2C9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231982797</pqid></control><display><type>article</type><title>The conjugate locus on convex surfaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Waters, Thomas</creator><creatorcontrib>Waters, Thomas</creatorcontrib><description>The conjugate locus of a point on a surface is the envelope of geodesics emanating radially from that point. In this paper we show that the conjugate loci of generic points on convex surfaces satisfy a simple relationship between the rotation index and the number of cusps. As a consequence we prove the ‘vierspitzensatz’: the conjugate locus of a generic point on a convex surface must have at least four cusps. Along the way we prove certain results about evolutes in the plane and we extend the discussion to the existence of ‘smooth loops’ and geodesic curvature.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-018-0368-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Conjugates ; Convex and Discrete Geometry ; Curvature ; Cusps ; Differential Geometry ; Geodesy ; Hyperbolic Geometry ; Loci ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2019-06, Vol.200 (1), p.241-254</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b9ab83167f42f273dc8570f6893ee00d8ae4c75ff38613aaa2ca5107b6f423c63</citedby><cites>FETCH-LOGICAL-c359t-b9ab83167f42f273dc8570f6893ee00d8ae4c75ff38613aaa2ca5107b6f423c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-018-0368-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-018-0368-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Waters, Thomas</creatorcontrib><title>The conjugate locus on convex surfaces</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>The conjugate locus of a point on a surface is the envelope of geodesics emanating radially from that point. In this paper we show that the conjugate loci of generic points on convex surfaces satisfy a simple relationship between the rotation index and the number of cusps. As a consequence we prove the ‘vierspitzensatz’: the conjugate locus of a generic point on a convex surface must have at least four cusps. Along the way we prove certain results about evolutes in the plane and we extend the discussion to the existence of ‘smooth loops’ and geodesic curvature.</description><subject>Algebraic Geometry</subject><subject>Conjugates</subject><subject>Convex and Discrete Geometry</subject><subject>Curvature</subject><subject>Cusps</subject><subject>Differential Geometry</subject><subject>Geodesy</subject><subject>Hyperbolic Geometry</subject><subject>Loci</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC4C06kzRfRylahYKXeg7ZNKmWuqnJrui_N2UFT54Ghvd5Z3gIuUS4QQB1WxAUIgXUFLjUVB-RCQrFqEGpj8kEYCapUEKckrNStgBglGITcr16DY1P3XbYuD40u-SH0qTusPoMX00ZcnQ-lHNyEt2uhIvfOSUvD_er-SNdPi-e5ndL6rkwPW2NazVHqeKMRab42muhIEpteAgAa-3CzCsRI9cSuXOOeSfq562sAPeST8nV2LvP6WMIpbfbNOSunrSMcTSaKaNqCseUz6mUHKLd57d3l78tgj3osKMOW3XYgw6rK8NGptRstwn5r_l_6Acut2C9</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Waters, Thomas</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>The conjugate locus on convex surfaces</title><author>Waters, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b9ab83167f42f273dc8570f6893ee00d8ae4c75ff38613aaa2ca5107b6f423c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebraic Geometry</topic><topic>Conjugates</topic><topic>Convex and Discrete Geometry</topic><topic>Curvature</topic><topic>Cusps</topic><topic>Differential Geometry</topic><topic>Geodesy</topic><topic>Hyperbolic Geometry</topic><topic>Loci</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waters, Thomas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waters, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The conjugate locus on convex surfaces</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>200</volume><issue>1</issue><spage>241</spage><epage>254</epage><pages>241-254</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>The conjugate locus of a point on a surface is the envelope of geodesics emanating radially from that point. In this paper we show that the conjugate loci of generic points on convex surfaces satisfy a simple relationship between the rotation index and the number of cusps. As a consequence we prove the ‘vierspitzensatz’: the conjugate locus of a generic point on a convex surface must have at least four cusps. Along the way we prove certain results about evolutes in the plane and we extend the discussion to the existence of ‘smooth loops’ and geodesic curvature.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-018-0368-8</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0046-5755 |
ispartof | Geometriae dedicata, 2019-06, Vol.200 (1), p.241-254 |
issn | 0046-5755 1572-9168 |
language | eng |
recordid | cdi_proquest_journals_2231982797 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebraic Geometry Conjugates Convex and Discrete Geometry Curvature Cusps Differential Geometry Geodesy Hyperbolic Geometry Loci Mathematics Mathematics and Statistics Original Paper Projective Geometry Topology |
title | The conjugate locus on convex surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20conjugate%20locus%20on%20convex%20surfaces&rft.jtitle=Geometriae%20dedicata&rft.au=Waters,%20Thomas&rft.date=2019-06-01&rft.volume=200&rft.issue=1&rft.spage=241&rft.epage=254&rft.pages=241-254&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-018-0368-8&rft_dat=%3Cproquest_cross%3E2231982797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231982797&rft_id=info:pmid/&rfr_iscdi=true |