The conjugate locus on convex surfaces

The conjugate locus of a point on a surface is the envelope of geodesics emanating radially from that point. In this paper we show that the conjugate loci of generic points on convex surfaces satisfy a simple relationship between the rotation index and the number of cusps. As a consequence we prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2019-06, Vol.200 (1), p.241-254
1. Verfasser: Waters, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 1
container_start_page 241
container_title Geometriae dedicata
container_volume 200
creator Waters, Thomas
description The conjugate locus of a point on a surface is the envelope of geodesics emanating radially from that point. In this paper we show that the conjugate loci of generic points on convex surfaces satisfy a simple relationship between the rotation index and the number of cusps. As a consequence we prove the ‘vierspitzensatz’: the conjugate locus of a generic point on a convex surface must have at least four cusps. Along the way we prove certain results about evolutes in the plane and we extend the discussion to the existence of ‘smooth loops’ and geodesic curvature.
doi_str_mv 10.1007/s10711-018-0368-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2231982797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231982797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b9ab83167f42f273dc8570f6893ee00d8ae4c75ff38613aaa2ca5107b6f423c63</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC4C06kzRfRylahYKXeg7ZNKmWuqnJrui_N2UFT54Ghvd5Z3gIuUS4QQB1WxAUIgXUFLjUVB-RCQrFqEGpj8kEYCapUEKckrNStgBglGITcr16DY1P3XbYuD40u-SH0qTusPoMX00ZcnQ-lHNyEt2uhIvfOSUvD_er-SNdPi-e5ndL6rkwPW2NazVHqeKMRab42muhIEpteAgAa-3CzCsRI9cSuXOOeSfq562sAPeST8nV2LvP6WMIpbfbNOSunrSMcTSaKaNqCseUz6mUHKLd57d3l78tgj3osKMOW3XYgw6rK8NGptRstwn5r_l_6Acut2C9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231982797</pqid></control><display><type>article</type><title>The conjugate locus on convex surfaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Waters, Thomas</creator><creatorcontrib>Waters, Thomas</creatorcontrib><description>The conjugate locus of a point on a surface is the envelope of geodesics emanating radially from that point. In this paper we show that the conjugate loci of generic points on convex surfaces satisfy a simple relationship between the rotation index and the number of cusps. As a consequence we prove the ‘vierspitzensatz’: the conjugate locus of a generic point on a convex surface must have at least four cusps. Along the way we prove certain results about evolutes in the plane and we extend the discussion to the existence of ‘smooth loops’ and geodesic curvature.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-018-0368-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Conjugates ; Convex and Discrete Geometry ; Curvature ; Cusps ; Differential Geometry ; Geodesy ; Hyperbolic Geometry ; Loci ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2019-06, Vol.200 (1), p.241-254</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b9ab83167f42f273dc8570f6893ee00d8ae4c75ff38613aaa2ca5107b6f423c63</citedby><cites>FETCH-LOGICAL-c359t-b9ab83167f42f273dc8570f6893ee00d8ae4c75ff38613aaa2ca5107b6f423c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-018-0368-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-018-0368-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Waters, Thomas</creatorcontrib><title>The conjugate locus on convex surfaces</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>The conjugate locus of a point on a surface is the envelope of geodesics emanating radially from that point. In this paper we show that the conjugate loci of generic points on convex surfaces satisfy a simple relationship between the rotation index and the number of cusps. As a consequence we prove the ‘vierspitzensatz’: the conjugate locus of a generic point on a convex surface must have at least four cusps. Along the way we prove certain results about evolutes in the plane and we extend the discussion to the existence of ‘smooth loops’ and geodesic curvature.</description><subject>Algebraic Geometry</subject><subject>Conjugates</subject><subject>Convex and Discrete Geometry</subject><subject>Curvature</subject><subject>Cusps</subject><subject>Differential Geometry</subject><subject>Geodesy</subject><subject>Hyperbolic Geometry</subject><subject>Loci</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC4C06kzRfRylahYKXeg7ZNKmWuqnJrui_N2UFT54Ghvd5Z3gIuUS4QQB1WxAUIgXUFLjUVB-RCQrFqEGpj8kEYCapUEKckrNStgBglGITcr16DY1P3XbYuD40u-SH0qTusPoMX00ZcnQ-lHNyEt2uhIvfOSUvD_er-SNdPi-e5ndL6rkwPW2NazVHqeKMRab42muhIEpteAgAa-3CzCsRI9cSuXOOeSfq562sAPeST8nV2LvP6WMIpbfbNOSunrSMcTSaKaNqCseUz6mUHKLd57d3l78tgj3osKMOW3XYgw6rK8NGptRstwn5r_l_6Acut2C9</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Waters, Thomas</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>The conjugate locus on convex surfaces</title><author>Waters, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b9ab83167f42f273dc8570f6893ee00d8ae4c75ff38613aaa2ca5107b6f423c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebraic Geometry</topic><topic>Conjugates</topic><topic>Convex and Discrete Geometry</topic><topic>Curvature</topic><topic>Cusps</topic><topic>Differential Geometry</topic><topic>Geodesy</topic><topic>Hyperbolic Geometry</topic><topic>Loci</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waters, Thomas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waters, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The conjugate locus on convex surfaces</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>200</volume><issue>1</issue><spage>241</spage><epage>254</epage><pages>241-254</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>The conjugate locus of a point on a surface is the envelope of geodesics emanating radially from that point. In this paper we show that the conjugate loci of generic points on convex surfaces satisfy a simple relationship between the rotation index and the number of cusps. As a consequence we prove the ‘vierspitzensatz’: the conjugate locus of a generic point on a convex surface must have at least four cusps. Along the way we prove certain results about evolutes in the plane and we extend the discussion to the existence of ‘smooth loops’ and geodesic curvature.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-018-0368-8</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2019-06, Vol.200 (1), p.241-254
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_2231982797
source SpringerLink Journals - AutoHoldings
subjects Algebraic Geometry
Conjugates
Convex and Discrete Geometry
Curvature
Cusps
Differential Geometry
Geodesy
Hyperbolic Geometry
Loci
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Topology
title The conjugate locus on convex surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20conjugate%20locus%20on%20convex%20surfaces&rft.jtitle=Geometriae%20dedicata&rft.au=Waters,%20Thomas&rft.date=2019-06-01&rft.volume=200&rft.issue=1&rft.spage=241&rft.epage=254&rft.pages=241-254&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-018-0368-8&rft_dat=%3Cproquest_cross%3E2231982797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231982797&rft_id=info:pmid/&rfr_iscdi=true