The conjugate locus on convex surfaces

The conjugate locus of a point on a surface is the envelope of geodesics emanating radially from that point. In this paper we show that the conjugate loci of generic points on convex surfaces satisfy a simple relationship between the rotation index and the number of cusps. As a consequence we prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2019-06, Vol.200 (1), p.241-254
1. Verfasser: Waters, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conjugate locus of a point on a surface is the envelope of geodesics emanating radially from that point. In this paper we show that the conjugate loci of generic points on convex surfaces satisfy a simple relationship between the rotation index and the number of cusps. As a consequence we prove the ‘vierspitzensatz’: the conjugate locus of a generic point on a convex surface must have at least four cusps. Along the way we prove certain results about evolutes in the plane and we extend the discussion to the existence of ‘smooth loops’ and geodesic curvature.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-018-0368-8