Approximation by modified U n ρ operators
The purpose of present paper is to extend the study of λ-Bernstein operators introduce by Cai et al. (J Inequal Appl 12:1–11, 2018). In our paper we consider a generalization of the Unρ operators introduced in 2007 by Radu Paltanea, using the new Bernstein–Bézier bases {b~n,k} with shape parameter λ...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2019-01, Vol.113 (3), p.2715-2729 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of present paper is to extend the study of λ-Bernstein operators introduce by Cai et al. (J Inequal Appl 12:1–11, 2018). In our paper we consider a generalization of the Unρ operators introduced in 2007 by Radu Paltanea, using the new Bernstein–Bézier bases {b~n,k} with shape parameter λ. Some approximation properties are given, including local approximation, error estimation in terms of moduli of continuity and Voronovskaja-type asymptotic formulas. Finally, we give some numerical examples and graphs to put in evidence the convergence of Unρ(f;x) to f(x). |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-019-00655-y |