Approximation by modified U n ρ operators

The purpose of present paper is to extend the study of λ-Bernstein operators introduce by Cai et al. (J Inequal Appl 12:1–11, 2018). In our paper we consider a generalization of the Unρ operators introduced in 2007 by Radu Paltanea, using the new Bernstein–Bézier bases {b~n,k} with shape parameter λ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2019-01, Vol.113 (3), p.2715-2729
Hauptverfasser: Ana-Maria Acu, Acar, Tuncer, Voichiţa, Adriana Radu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of present paper is to extend the study of λ-Bernstein operators introduce by Cai et al. (J Inequal Appl 12:1–11, 2018). In our paper we consider a generalization of the Unρ operators introduced in 2007 by Radu Paltanea, using the new Bernstein–Bézier bases {b~n,k} with shape parameter λ. Some approximation properties are given, including local approximation, error estimation in terms of moduli of continuity and Voronovskaja-type asymptotic formulas. Finally, we give some numerical examples and graphs to put in evidence the convergence of Unρ(f;x) to f(x).
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-019-00655-y