Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems
We introduce the notions of weighted lacunary statistical pointwise and uniform convergence and a kind of convergence which is lying between aforementioned convergence methods, namely, weighted lacunary equi-statistical convergence and obtain various implication results with supporting examples. We...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2019-07, Vol.113 (3), p.1955-1973 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the notions of weighted lacunary statistical pointwise and uniform convergence and a kind of convergence which is lying between aforementioned convergence methods, namely, weighted lacunary equi-statistical convergence and obtain various implication results with supporting examples. We then apply our new concept of weighted lacunary equi-statistical convergence with a view to proving Korovkin and Voronovskaya type approximation theorems. We also construct an example with the help of generating functions type Meyer-König and Zeller which shows that our Korovkin-type theorem is stronger than its classical version. Moreover, we compute the rate of weighted lacunary equi-statistical convergence for operators in terms of modulus of continuity. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-018-0591-z |