Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems

We introduce the notions of weighted lacunary statistical pointwise and uniform convergence and a kind of convergence which is lying between aforementioned convergence methods, namely, weighted lacunary equi-statistical convergence and obtain various implication results with supporting examples. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2019-07, Vol.113 (3), p.1955-1973
Hauptverfasser: Mohiuddine, S. A., Alamri, Badriah A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the notions of weighted lacunary statistical pointwise and uniform convergence and a kind of convergence which is lying between aforementioned convergence methods, namely, weighted lacunary equi-statistical convergence and obtain various implication results with supporting examples. We then apply our new concept of weighted lacunary equi-statistical convergence with a view to proving Korovkin and Voronovskaya type approximation theorems. We also construct an example with the help of generating functions type Meyer-König and Zeller which shows that our Korovkin-type theorem is stronger than its classical version. Moreover, we compute the rate of weighted lacunary equi-statistical convergence for operators in terms of modulus of continuity.
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-018-0591-z