Isobaric Vapour–Liquid Equilibrium Data Measurement for a Binary System of Green Solvent 2-Methyltetrahydrofuran and Acetic acid at 101.3 kPa

Green solvents are eco-friendly solvents that can play significant role in the reduction in health hazard and safety issues caused by classical solvents. The use of green solvents can be supported and enhanced by providing the data banks of these solvents, particularly vapour–liquid equilibrium (VLE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) 2019-06, Vol.44 (6), p.5371-5379
Hauptverfasser: Parsana, Vyomesh M., Parikh, Sachin P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Green solvents are eco-friendly solvents that can play significant role in the reduction in health hazard and safety issues caused by classical solvents. The use of green solvents can be supported and enhanced by providing the data banks of these solvents, particularly vapour–liquid equilibrium (VLE) data that are required for the design of separation systems. A dynamic VLE still based on the Raal modification of Yerazunis et al. (1964) apparatus was employed in the measurement of isobaric VLE data. The VLE still was maintained at 101.3 kPa pressure. The thermodynamic consistency of the measured VLE data was confirmed by Herington’s area test and Van Ness’s point-to-point test. The correlation of VLE data was established by excess Gibbs energy models NRTL, Wilson and UNIQUAC and the result showed that all three models were in good agreement with the experimental data. The absolute average deviation in temperature was 0.3953 K, 0.3823 K, 0.3977 K and the absolute average deviation in vapour-phase composition was 0.0053, 0.0052, 0.0053 for NRTL, Wilson and UNIQUAC models, respectively. The relative volatility chart of 2-MeTHF/Acetic acid versus 2-MeTHF liquid mole fraction showing ± 5 % deviation of experimental data from Wilson model data was also depicted. The comparison of the experimental VLE data with the data predicted by UNIFAC and modified UNIFAC Dortmund methods was made. The VLE data were generated through binary interaction parameters from Aspen Hysys for Wilson, NRTL and UNIQUAC models and compared with the experimental data.
ISSN:2193-567X
1319-8025
2191-4281
DOI:10.1007/s13369-018-3638-8