Probing the Mechanism of Improved Performance for Sodium-ion Batteries by Utilizing Three-electrode Cells: Effects of Sodium-ion Concentration in Ionic Liquid Electrolytes

We investigated the full-cell performance of sodium-ion batteries composed of a hard carbon (HC) negative electrode, a NaCrO2 positive electrode, and an ionic liquid electrolyte Na[FSA]–[C3C1pyrr][FSA] (FSA = bis(fluorosulfonyl)amide, C3C1pyrr = N-methyl-N-propylpyrrolidinium) at 333 K. Before the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki kagaku oyobi kōgyō butsuri kagaku 2019/05/05, Vol.87(3), pp.175-181
Hauptverfasser: YAMAMOTO, Takayuki, MITSUHASHI, Kazushi, MATSUMOTO, Kazuhiko, HAGIWARA, Rika, FUKUNAGA, Atsushi, SAKAI, Shoichiro, NITTA, Koji, NOHIRA, Toshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the full-cell performance of sodium-ion batteries composed of a hard carbon (HC) negative electrode, a NaCrO2 positive electrode, and an ionic liquid electrolyte Na[FSA]–[C3C1pyrr][FSA] (FSA = bis(fluorosulfonyl)amide, C3C1pyrr = N-methyl-N-propylpyrrolidinium) at 333 K. Before the full-cell tests, charge–discharge tests of the Na/HC and Na/NaCrO2 half cells were conducted, from which the practical capacities were determined to be ca. 250 mAh (g-HC)−1 and ca. 115 mAh (g-NaCrO2)−1, respectively. Using these capacities, the performance of HC/NaCrO2 full cells with practical loading masses was evaluated by three-electrode cells with a sodium metal reference electrode, and the energy density was calculated to be 177 Wh (kg-(NaCrO2 + HC))−1. In particular, we focused on the effect of the sodium-ion concentration on the performance by varying the molar fraction of Na[FSA] (x(Na[FSA])) from 0.20 to 0.50. The best rate capability was obtained at a composition of x(Na[FSA]) = 0.50. The effect of the sodium-ion concentration was discussed in terms of the potential profiles of the positive and negative electrodes. The results were explained by the sodium-ion supplying capability of the electrolyte inside the electrode, where the sodium insertion reaction occurs.
ISSN:1344-3542
2186-2451
DOI:10.5796/electrochemistry.18-00098