3-Halopropenyl esters as precursors of a new class of oxygen-substituted allylic organometallic compounds: Applications in organic synthesis
3-halopropenyl esters, readily prepared by the addition of acyl halides to acrolein, react with zinc, indium, and chromium(II), thus opening a route to a new class of oxygen-substituted allylic organometallic compounds. Indium and zinc reagents smoothly add to carbonyl compounds, affording alk-1-en-...
Gespeichert in:
Veröffentlicht in: | Pure and applied chemistry 2004-01, Vol.76 (3), p.657-669 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 3-halopropenyl esters, readily prepared by the addition of acyl halides to acrolein, react with zinc, indium, and chromium(II), thus opening a route to a new class of oxygen-substituted allylic organometallic compounds. Indium and zinc reagents smoothly add to carbonyl compounds, affording alk-1-en-3,4-diol derivatives in a variety of synthetic procedures which include typical Grignard stepwise conditions as well as Barbier one-pot protocols. Using zinc and indium in water or aprotic solvents, simple diastereoselectivity was found to depend on the nature of the carbonyl compound; conjugated aldehydes favor formation of syn-adducts while unconjugated aldehydes favor
-adducts. Moving to chromium, a reversal of regioselectivity was observed in favor of (Z)-4-hydroxy-enolacetates, flexible protected forms of homoaldols. Chromium complexes are generated in a catalytic cycle based on the combined use of the redox Mn(0)/Cr(III) couple and of TMSCl. When the Cr-catalyzed reaction is carried out in the presence of Jacobsen's Salen ligand, the regiochemical outcome of the reaction is again reversed, and
-alk-1-en-3,4-diols are formed in high ee's. |
---|---|
ISSN: | 0033-4545 1365-3075 |
DOI: | 10.1351/pac200476030657 |