A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system

Dockless bike-sharing is becoming popular all over the world, and short-term spatiotemporal distribution forecasting on system state has been further enlarged due to its dynamic spatiotemporal characteristics. We employ a deep learning approach, named the convolutional long short-term memory network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2019-05, Vol.31 (5), p.1665-1677
Hauptverfasser: Ai, Yi, Li, Zongping, Gan, Mi, Zhang, Yunpeng, Yu, Daben, Chen, Wei, Ju, Yanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dockless bike-sharing is becoming popular all over the world, and short-term spatiotemporal distribution forecasting on system state has been further enlarged due to its dynamic spatiotemporal characteristics. We employ a deep learning approach, named the convolutional long short-term memory network (conv-LSTM), to address the spatial dependences and temporal dependences. The spatiotemporal variables including number of bicycles in area, distribution uniformity, usage distribution, and time of day as a spatiotemporal sequence in which both the input and the prediction target are spatiotemporal 3D tensors within one end-to-end learning architecture. Experiments show that conv-LSTM outperforms LSTM on capturing spatiotemporal correlations.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-018-3470-9