Categorical relations between Langlands dual quantum affine algebras: doubly laced types

We prove that the Grothendieck rings of category C Q ( t ) over quantum affine algebras U q ′ ( g ( t ) ) ( t = 1 , 2 ) associated with each Dynkin quiver Q of finite type A 2 n - 1 (resp. D n + 1 ) are isomorphic to one of the categories C Q over the Langlands dual U q ′ ( L g ( 2 ) ) of U q ′ ( g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2019-06, Vol.49 (4), p.401-435
Hauptverfasser: Kashiwara, Masaki, Oh, Se-jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the Grothendieck rings of category C Q ( t ) over quantum affine algebras U q ′ ( g ( t ) ) ( t = 1 , 2 ) associated with each Dynkin quiver Q of finite type A 2 n - 1 (resp. D n + 1 ) are isomorphic to one of the categories C Q over the Langlands dual U q ′ ( L g ( 2 ) ) of U q ′ ( g ( 2 ) ) associated with any twisted adapted class [ Q ] of A 2 n - 1 (resp. D n + 1 ). This results provide simplicity-preserving correspondences on Langlands duality for finite-dimensional representation of quantum affine algebras, suggested by Frenkel–Hernandez.
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-018-0829-z