Influence of bypass ratio on subsonic and correctly expanded sonic co-flowing jets with finite lip thickness
The effects of bypass ratio on co-flowing subsonic and correctly expanded sonic jet decay have been studied experimentally. Co-flowing jets with lip thickness 1.0Dp (where Dp is the diameter of primary nozzle and is equal to 10 mm) with bypass ratios of around 0.7, 1.4, and 6.4 at primary jet exit M...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2019-06, Vol.233 (7), p.2536-2548 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of bypass ratio on co-flowing subsonic and correctly expanded sonic jet decay have been studied experimentally. Co-flowing jets with lip thickness 1.0Dp (where Dp is the diameter of primary nozzle and is equal to 10 mm) with bypass ratios of around 0.7, 1.4, and 6.4 at primary jet exit Mach numbers 0.6, 0.8, and 1.0 have been analyzed. A single free jet equivalent to primary nozzle of the co-flowing nozzle was considered for comparison. Primary jet centerline total pressure decay, spread, and static pressure variation were investigated. The results show that the mixing of the high bypass ratio co-flowing jet with lip thickness 1.0Dp is superior to low bypass ratio co-flowing jet. Both lip thickness and bypass ratio have a strong influence on the co-flowing jet mixing. Bypass ratio 6.3 experiences a significantly higher mixing than bypass ratio 0.7 and 1.4. Selected jets were also investigated computationally. The computations capture the salient flow physics and reproduce well with the experiments. |
---|---|
ISSN: | 0954-4100 2041-3025 |
DOI: | 10.1177/0954410018782511 |