Twisted conjugacy and quasi-isometric rigidity of irreducible lattices in semisimple lie groups

Let G be a non-compact semisimple Lie group with finite centre and finitely many connected components. We show that any finitely generated group Γ which is quasi-isometric to an irreducible lattice in G has the R ∞ -property, namely, that there are infinitely many ϕ -twisted conjugacy classes for ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2019-06, Vol.50 (2), p.403-412
Hauptverfasser: Mubeena, T., Sankaran, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a non-compact semisimple Lie group with finite centre and finitely many connected components. We show that any finitely generated group Γ which is quasi-isometric to an irreducible lattice in G has the R ∞ -property, namely, that there are infinitely many ϕ -twisted conjugacy classes for every automorphism ϕ of Γ. Also, we show that any lattice in G has the R ∞ -property, extending our earlier result for irreducible lattices.
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-019-0334-7