Twisted conjugacy and quasi-isometric rigidity of irreducible lattices in semisimple lie groups
Let G be a non-compact semisimple Lie group with finite centre and finitely many connected components. We show that any finitely generated group Γ which is quasi-isometric to an irreducible lattice in G has the R ∞ -property, namely, that there are infinitely many ϕ -twisted conjugacy classes for ev...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2019-06, Vol.50 (2), p.403-412 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a non-compact semisimple Lie group with finite centre and finitely many connected components. We show that any finitely generated group Γ which is quasi-isometric to an irreducible lattice in
G
has the
R
∞
-property, namely, that there are infinitely many
ϕ
-twisted conjugacy classes for every automorphism
ϕ
of Γ. Also, we show that any lattice in
G
has the
R
∞
-property, extending our earlier result for irreducible lattices. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-019-0334-7 |