Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride

Green synthesis of nanoparticles has an increasing benefit because of the rising need for developing environmentally friendly, cost-effective and safe strategies for nanomaterials synthesis. In this study, we investigated the fungus Trichoderma viride, which is used for the synthesis of biogenic sil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology, biotechnological equipment biotechnological equipment, 2016-03, Vol.30 (2), p.299-304
Hauptverfasser: Elgorban, Abdallah Mohamed, Al-Rahmah, Abdullah Naser, Sayed, Shaban Rushdy, Hirad, Abdurahman, Mostafa, Ashraf Abdеl-Fattah, Bahkali, Ali Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Green synthesis of nanoparticles has an increasing benefit because of the rising need for developing environmentally friendly, cost-effective and safe strategies for nanomaterials synthesis. In this study, we investigated the fungus Trichoderma viride, which is used for the synthesis of biogenic silver nanoparticles. The bioreduction of silver nanoparticles (Ag NPs) was observed spectrophotometrically, and the studied Ag NPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy and scanning electron microscopy. The Ag NPs synthesized by T. viride were observed as stabilized and polydispersed globular particles, in sizes ranging from 1 to 50 nm. The antibacterial potential of Ag NPs was evaluated against human pathogenic bacteria. The biogenic Ag NPs significantly inhibited the growth of all tested pathogenic bacteria.
ISSN:1310-2818
1314-3530
DOI:10.1080/13102818.2015.1133255