Testing for detection of crack in rotor using vibration analysis: an experimental approach

Purpose Many incidents of rotor failures are reported due to the development and propagation of the crack. Condition monitoring is adopted for the identification of symptoms of the crack at very early stage in the rotating machinery. Identification requires a reliable and accurate vibration analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of quality & reliability management 2019-05, Vol.36 (6), p.999-1013
Hauptverfasser: Shah, Bhumi Ankit, Vakharia, Dipak P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Many incidents of rotor failures are reported due to the development and propagation of the crack. Condition monitoring is adopted for the identification of symptoms of the crack at very early stage in the rotating machinery. Identification requires a reliable and accurate vibration analysis technique for achieving the objective of the study. The purpose of this paper is to detect the crack in the rotating machinery by measuring vibration parameters at different measurement locations. Design/methodology/approach Two different types of cracks were simulated in these experiments. Experiments were conducted using healthy shaft, crack simulated shaft and glued shaft with and without added unbalance to observe the changes in vibration pattern, magnitude and phase. Deviation in vibration response allows the identification of crack and its location. Initial data were acquired in the form of time waveform. Run-up and coast-down measurements were taken to find the critical speed. The wavelet packet energy analysis technique was used to get better localization in time and frequency zone. Findings The presence of crack changes the dynamic behavior of the rotor. 1× and 2× harmonic components for steady-state test and critical speed for transient test are important parameters in condition monitoring to detect the crack. To separate the 1× and 2× harmonic component in the different wavelet packets, original signal is decomposed in nine levels. Wavelet packet energy analysis is carried out to find the intensity of the signal due to simulated crack. Originality/value Original signals obtained from the experiment test set up may contain noise component and dominant frequency components other than the crack. Wavelet packets contain the crack-related information that are identified and separated in this study. This technique develops the condition monitoring procedure more specific about the type of the fault and accurate due to the separation of specific fault features in different wavelet packets. From the experiment end results, it is found that there is significant rise in a 2× energy component due to crack in the shaft. The intensity of a 1× energy component depends upon the shaft crack and unbalance orientation angle.
ISSN:0265-671X
1758-6682
DOI:10.1108/IJQRM-06-2017-0107