A modulator-free quantum key distribution transmitter chip
Quantum key distribution (QKD) has convincingly been proven compatible with real life applications. Its wide-scale deployment in optical networks will benefit from an optical platform that allows miniature devices capable of encoding the necessarily complex signals at high rates and with low power c...
Gespeichert in:
Veröffentlicht in: | npj quantum information 2019-05, Vol.5 (1), Article 42 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum key distribution (QKD) has convincingly been proven compatible with real life applications. Its wide-scale deployment in optical networks will benefit from an optical platform that allows miniature devices capable of encoding the necessarily complex signals at high rates and with low power consumption. While photonic integration is the ideal route toward miniaturisation, an efficient route to high-speed encoding of the quantum phase states on chip is still missing. Consequently, current devices rely on bulky and high power demanding phase modulation elements which hinder the sought-after scalability and energy efficiency. Here we exploit a novel approach to high-speed phase encoding and demonstrate a compact, scalable and power efficient integrated quantum transmitter. We encode cryptographic keys on-demand in high repetition rate pulse streams using injection-locking with deterministic phase control at the seed laser. We demonstrate record secure-key-rates under multi-protocol operation. Our modulator-free transmitters enable the development of high-bit rate quantum communications devices, which will be essential for the practical integration of quantum key distribution in high connectivity networks. |
---|---|
ISSN: | 2056-6387 2056-6387 |
DOI: | 10.1038/s41534-019-0158-7 |