Enhanced Seasonal Prediction of European Winter Warming following Volcanic Eruptions

The impact of explosive volcanic eruptions on the atmospheric circulation at high northern latitudes is assessed in two versions of the Met Office Hadley Centre’s atmospheric climate model. The standard version of the model extends to an altitude of around 40 km, while the extended version has enhan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2009-12, Vol.22 (23), p.6168-6180
Hauptverfasser: Marshall, A. G., Scaife, A. A., Ineson, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The impact of explosive volcanic eruptions on the atmospheric circulation at high northern latitudes is assessed in two versions of the Met Office Hadley Centre’s atmospheric climate model. The standard version of the model extends to an altitude of around 40 km, while the extended version has enhanced stratospheric resolution and reaches 85-km altitude. Seasonal hindcasts initialized on 1 December produce a strengthening of the winter polar vortex and anomalous warming over northern Europe characteristic of the positive phase of the Arctic Oscillation (AO) when forced with volcanic aerosol following the 1963 Mount Agung, 1982 El Chichón, and 1991 Mount Pinatubo eruptions, as is observed. The AO signal in the extended model is of comparable strength to that in the standard model, showing that there is little impact from both increasing the vertical resolution in the stratosphere and extending the model domain to near the mesopause. The presence of this signal in the models, however, is likely due to the persistence of the observed signal from the initial conditions, because a similar set of experiments initiated with the same conditions, but with no volcanic aerosol forcing, exhibits a similar response as the forced runs. This suggests that the model has limited fidelity in capturing the response to volcanic aerosols on its own, consistent with previous studies on the impact of volcanic forcing in long climate simulations, but does support the premise that seasonal winter forecasts are substantially improved with the inclusion of stratospheric information.
ISSN:0894-8755
1520-0442
DOI:10.1175/2010JCLI3145.1