Homological dimensions of smooth crossed products

In this paper we provide upper estimates for the global projective dimensions of smooth crossed products \(\mathscr{S}(G, A; \alpha)\) for \(G = \mathbb{R}\) and \(G = \mathbb{T}\) and a self-induced Fréchet-Arens-Michael algebra \(A\). In order to do this, we provide a powerful generalization of me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-05
1. Verfasser: Kosenko, Petr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we provide upper estimates for the global projective dimensions of smooth crossed products \(\mathscr{S}(G, A; \alpha)\) for \(G = \mathbb{R}\) and \(G = \mathbb{T}\) and a self-induced Fréchet-Arens-Michael algebra \(A\). In order to do this, we provide a powerful generalization of methods which are used in the works of Ogneva and Helemskii.
ISSN:2331-8422