Homological dimensions of smooth crossed products
In this paper we provide upper estimates for the global projective dimensions of smooth crossed products \(\mathscr{S}(G, A; \alpha)\) for \(G = \mathbb{R}\) and \(G = \mathbb{T}\) and a self-induced Fréchet-Arens-Michael algebra \(A\). In order to do this, we provide a powerful generalization of me...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we provide upper estimates for the global projective dimensions of smooth crossed products \(\mathscr{S}(G, A; \alpha)\) for \(G = \mathbb{R}\) and \(G = \mathbb{T}\) and a self-induced Fréchet-Arens-Michael algebra \(A\). In order to do this, we provide a powerful generalization of methods which are used in the works of Ogneva and Helemskii. |
---|---|
ISSN: | 2331-8422 |