A shuffling theorem for lozenge tilings of doubly-dented hexagons
MacMahon's theorem on plane partitions yields a simple product formula for tiling number of a hexagon, and Cohn, Larsen and Propp's theorem provides an explicit enumeration for tilings of a dented semihexagon via semi-strict Gelfand--Tsetlin patterns. In this paper, we prove a natural hybr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lai, Tri Rohatgi, Ranjan |
description | MacMahon's theorem on plane partitions yields a simple product formula for tiling number of a hexagon, and Cohn, Larsen and Propp's theorem provides an explicit enumeration for tilings of a dented semihexagon via semi-strict Gelfand--Tsetlin patterns. In this paper, we prove a natural hybrid of the two theorems for hexagons with an arbitrary set of unit triangles removed along a horizontal axis. In particular, we show that the `shuffling' of removed unit triangles only changes the tiling number of the region by a simple multiplicative factor. Our main result generalizes a number of known enumerations and asymptotic enumerations of tilings. We also reveal connections of the main result to the study of symmetric functions and \(q\)-series. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2228965512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2228965512</sourcerecordid><originalsourceid>FETCH-proquest_journals_22289655123</originalsourceid><addsrcrecordid>eNqNyksKwjAQgOEgCBbtHQZcF9qJqXVZRPEA7kulkz6IGc0D1NOr4AFc_Yvvn4kEpSyyaoO4EKn3U57nWG5RKZmIugY_RK3NaHsIA7GjK2h2YPhFticI45c8sIaO48U8s45soA4GerQ9W78Sc90aT-mvS7E-Hs77U3ZzfI_kQzNxdPZDDSJWu1KpAuV_1xuPYTms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2228965512</pqid></control><display><type>article</type><title>A shuffling theorem for lozenge tilings of doubly-dented hexagons</title><source>Free E- Journals</source><creator>Lai, Tri ; Rohatgi, Ranjan</creator><creatorcontrib>Lai, Tri ; Rohatgi, Ranjan</creatorcontrib><description>MacMahon's theorem on plane partitions yields a simple product formula for tiling number of a hexagon, and Cohn, Larsen and Propp's theorem provides an explicit enumeration for tilings of a dented semihexagon via semi-strict Gelfand--Tsetlin patterns. In this paper, we prove a natural hybrid of the two theorems for hexagons with an arbitrary set of unit triangles removed along a horizontal axis. In particular, we show that the `shuffling' of removed unit triangles only changes the tiling number of the region by a simple multiplicative factor. Our main result generalizes a number of known enumerations and asymptotic enumerations of tilings. We also reveal connections of the main result to the study of symmetric functions and \(q\)-series.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Enumeration ; Hexagons ; Theorems ; Tiling</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lai, Tri</creatorcontrib><creatorcontrib>Rohatgi, Ranjan</creatorcontrib><title>A shuffling theorem for lozenge tilings of doubly-dented hexagons</title><title>arXiv.org</title><description>MacMahon's theorem on plane partitions yields a simple product formula for tiling number of a hexagon, and Cohn, Larsen and Propp's theorem provides an explicit enumeration for tilings of a dented semihexagon via semi-strict Gelfand--Tsetlin patterns. In this paper, we prove a natural hybrid of the two theorems for hexagons with an arbitrary set of unit triangles removed along a horizontal axis. In particular, we show that the `shuffling' of removed unit triangles only changes the tiling number of the region by a simple multiplicative factor. Our main result generalizes a number of known enumerations and asymptotic enumerations of tilings. We also reveal connections of the main result to the study of symmetric functions and \(q\)-series.</description><subject>Enumeration</subject><subject>Hexagons</subject><subject>Theorems</subject><subject>Tiling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyksKwjAQgOEgCBbtHQZcF9qJqXVZRPEA7kulkz6IGc0D1NOr4AFc_Yvvn4kEpSyyaoO4EKn3U57nWG5RKZmIugY_RK3NaHsIA7GjK2h2YPhFticI45c8sIaO48U8s45soA4GerQ9W78Sc90aT-mvS7E-Hs77U3ZzfI_kQzNxdPZDDSJWu1KpAuV_1xuPYTms</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Lai, Tri</creator><creator>Rohatgi, Ranjan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190701</creationdate><title>A shuffling theorem for lozenge tilings of doubly-dented hexagons</title><author>Lai, Tri ; Rohatgi, Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22289655123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Enumeration</topic><topic>Hexagons</topic><topic>Theorems</topic><topic>Tiling</topic><toplevel>online_resources</toplevel><creatorcontrib>Lai, Tri</creatorcontrib><creatorcontrib>Rohatgi, Ranjan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Tri</au><au>Rohatgi, Ranjan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A shuffling theorem for lozenge tilings of doubly-dented hexagons</atitle><jtitle>arXiv.org</jtitle><date>2019-07-01</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>MacMahon's theorem on plane partitions yields a simple product formula for tiling number of a hexagon, and Cohn, Larsen and Propp's theorem provides an explicit enumeration for tilings of a dented semihexagon via semi-strict Gelfand--Tsetlin patterns. In this paper, we prove a natural hybrid of the two theorems for hexagons with an arbitrary set of unit triangles removed along a horizontal axis. In particular, we show that the `shuffling' of removed unit triangles only changes the tiling number of the region by a simple multiplicative factor. Our main result generalizes a number of known enumerations and asymptotic enumerations of tilings. We also reveal connections of the main result to the study of symmetric functions and \(q\)-series.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2228965512 |
source | Free E- Journals |
subjects | Enumeration Hexagons Theorems Tiling |
title | A shuffling theorem for lozenge tilings of doubly-dented hexagons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20shuffling%20theorem%20for%20lozenge%20tilings%20of%20doubly-dented%20hexagons&rft.jtitle=arXiv.org&rft.au=Lai,%20Tri&rft.date=2019-07-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2228965512%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2228965512&rft_id=info:pmid/&rfr_iscdi=true |