A shuffling theorem for lozenge tilings of doubly-dented hexagons
MacMahon's theorem on plane partitions yields a simple product formula for tiling number of a hexagon, and Cohn, Larsen and Propp's theorem provides an explicit enumeration for tilings of a dented semihexagon via semi-strict Gelfand--Tsetlin patterns. In this paper, we prove a natural hybr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MacMahon's theorem on plane partitions yields a simple product formula for tiling number of a hexagon, and Cohn, Larsen and Propp's theorem provides an explicit enumeration for tilings of a dented semihexagon via semi-strict Gelfand--Tsetlin patterns. In this paper, we prove a natural hybrid of the two theorems for hexagons with an arbitrary set of unit triangles removed along a horizontal axis. In particular, we show that the `shuffling' of removed unit triangles only changes the tiling number of the region by a simple multiplicative factor. Our main result generalizes a number of known enumerations and asymptotic enumerations of tilings. We also reveal connections of the main result to the study of symmetric functions and \(q\)-series. |
---|---|
ISSN: | 2331-8422 |