A gap theorem for positive Einstein metrics on the four-sphere
We show that there exists a universal positive constant ε 0 > 0 with the following property: let g be a positive Einstein metric on the four-sphere S 4 . If the Yamabe constant of the conformal class [ g ] satisfies Y ( S 4 , [ g ] ) > 1 3 Y ( S 4 , [ g S ] ) - ε 0 , where g S denotes the stan...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2019-04, Vol.373 (3-4), p.1329-1339 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that there exists a universal positive constant
ε
0
>
0
with the following property: let
g
be a positive Einstein metric on the four-sphere
S
4
. If the Yamabe constant of the conformal class [
g
] satisfies
Y
(
S
4
,
[
g
]
)
>
1
3
Y
(
S
4
,
[
g
S
]
)
-
ε
0
,
where
g
S
denotes the standard round metric on
S
4
, then, up to rescaling,
g
is isometric to
g
S
. This is an extension of Gursky’s gap theorem for positive Einstein metrics on
S
4
. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-018-1749-x |