Modularity lifting theorems for ordinary Galois representations

We generalize results of Clozel, Harris and Taylor by proving modularity lifting theorems for ordinary l -adic Galois representations of any dimension of an imaginary CM or totally real number field. The main theorems are obtained by establishing an R red = T theorem over a Hida family. A key part o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2019-04, Vol.373 (3-4), p.1341-1427
1. Verfasser: Geraghty, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize results of Clozel, Harris and Taylor by proving modularity lifting theorems for ordinary l -adic Galois representations of any dimension of an imaginary CM or totally real number field. The main theorems are obtained by establishing an R red = T theorem over a Hida family. A key part of the proof is to construct appropriate ordinary lifting rings at the primes dividing l and to determine their irreducible components.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-018-1742-4