Near Equality in the Riesz-Sobolev Inequality
The Riesz-Sobolev inequality provides a sharp upper bound for a trilinear expression involving convolution of indicator functions of sets. Equality is known to hold only for indicator functions of appropriately situated intervals. We characterize ordered triples of subsets of ℝ 1 that nearly realize...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2019-06, Vol.35 (6), p.783-814 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Riesz-Sobolev inequality provides a sharp upper bound for a trilinear expression involving convolution of indicator functions of sets. Equality is known to hold only for indicator functions of appropriately situated intervals. We characterize ordered triples of subsets of ℝ
1
that nearly realize equality, with quantitative bounds of power law form with the optimal exponent. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-019-8412-7 |