Improving process algebra model structure and parameters in infectious disease epidemiology through data mining

Computational models are increasingly used to assist decision-making in public health epidemiology, but achieving the best model is a complex task due to the interaction of many components and variability of parameter values causing radically different dynamics. The modelling process can be enhanced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent information systems 2019-06, Vol.52 (3), p.477-499
Hauptverfasser: Hamami, Dalila, Atmani, Baghdad, Cameron, Ross, Pollock, Kevin G, Shankland, Carron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computational models are increasingly used to assist decision-making in public health epidemiology, but achieving the best model is a complex task due to the interaction of many components and variability of parameter values causing radically different dynamics. The modelling process can be enhanced through the use of data mining techniques. Here, we demonstrate this by applying association rules and clustering techniques to two stages of modelling: identifying pertinent structures in the initial model creation stage, and choosing optimal parameters to match that model to observed data. This is illustrated through application to the study of the circulating mumps virus in Scotland, 2004-2015.
ISSN:0925-9902
1573-7675
DOI:10.1007/s10844-017-0476-1