IMHO Fine-Tuning Improves Claim Detection

Claims are the central component of an argument. Detecting claims across different domains or data sets can often be challenging due to their varying conceptualization. We propose to alleviate this problem by fine tuning a language model using a Reddit corpus of 5.5 million opinionated claims. These...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-05
Hauptverfasser: Chakrabarty, Tuhin, Hidey, Christopher, McKeown, Kathleen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Claims are the central component of an argument. Detecting claims across different domains or data sets can often be challenging due to their varying conceptualization. We propose to alleviate this problem by fine tuning a language model using a Reddit corpus of 5.5 million opinionated claims. These claims are self-labeled by their authors using the internet acronyms IMO/IMHO (in my (humble) opinion). Empirical results show that using this approach improves the state of art performance across four benchmark argumentation data sets by an average of 4 absolute F1 points in claim detection. As these data sets include diverse domains such as social media and student essays this improvement demonstrates the robustness of fine-tuning on this novel corpus.
ISSN:2331-8422