Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels

The over 600 km long Woodroffe Thrust developed at lower to mid-crustal levels during the intracontinental Petermann Orogeny at ca. 560–520 Ma. Ductile deformation with a top-to-north shear sense was accommodated along a shallowly (≤30°) south-dipping surface. Metamorphic conditions during deformati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonophysics 2019-05, Vol.758, p.55-72
Hauptverfasser: Wex, Sebastian, Mancktelow, Neil S., Camacho, Alfredo, Pennacchioni, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 55
container_title Tectonophysics
container_volume 758
creator Wex, Sebastian
Mancktelow, Neil S.
Camacho, Alfredo
Pennacchioni, Giorgio
description The over 600 km long Woodroffe Thrust developed at lower to mid-crustal levels during the intracontinental Petermann Orogeny at ca. 560–520 Ma. Ductile deformation with a top-to-north shear sense was accommodated along a shallowly (≤30°) south-dipping surface. Metamorphic conditions during deformation are established along a 60 km N-S transect, providing an ideal framework for studying variation in microstructure and crystallographic preferred orientations with changing temperature (ca. 520–620 °C) and pressure/depth in dominantly dry felsic crust. In the Woodroffe Thrust mylonites, dynamic recrystallization of quartz was dominated by subgrain rotation, whereas feldspar underwent grain size reduction by neocrystallization. Differential stress, estimated from quartz grain size piezometry, decreases with increasing metamorphic grade (i.e., deeper structural levels), and indicates a long-term average strain rate of around 10−11–10−12 s−1. We propose a qualitative rheological model to explain the observed cyclic interplay between ductile shearing (mylonitization) and brittle fracturing (pseudotachylyte formation) in the relatively dry middle crust. The model involves the downward migration of earthquake ruptures from the overlying seismogenic zone, which transiently triggers seismic slip at mid-crustal levels. •The Woodroffe Thrust involves an interplay between brittle and ductile deformation.•Microstructures are analyzed along a ~60 km section in the direction of thrusting.•Quartz recrystallized mainly by subgrain rotation, feldspar by neocrystallization.•The long-term average strain rate of the Woodroffe Thrust was ca. 10–11–10-12 s-1.•Transient coseismic strain rate increase can trigger earthquakes at mid-crustal levels.
doi_str_mv 10.1016/j.tecto.2018.10.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2227414340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040195118303524</els_id><sourcerecordid>2227414340</sourcerecordid><originalsourceid>FETCH-LOGICAL-a354t-5e81e1b7814aeebec6742a5e765fc7dcfe0be5fa39c709fe8a6052a28c75fe863</originalsourceid><addsrcrecordid>eNp9UcuOEzEQtBBIhIUv4NISVybYnrFncuCwWvGItBKXRRwtx9MmjiZ2aDuL5sY_8CX8El-CZwNXTt1dqqpWdzH2UvC14EK_OawLupLWkouhImsuu0dsJYZ-07RS68dsxXnHG7FR4il7lvOBc66F0iv2axsL0mmyM-ywfEeMkDHkY3DgybpyJgQbR7D_UEeIJwgRyh7hS0ojJe8R7vZ0zuU1OIyF7ATXdao1WPj94ydso0fC6DCDT_QgpT2mKX2dIXkgnGwJ9zjNMNIMLsUSYjWqPscwNm6xrv2ElZKfsyfeThlf_K1X7PP7d3c3H5vbTx-2N9e3jW1VVxqFg0Cx6wfRWcQdOt130irstfKuH51HvkPlbbtxPd94HKzmSlo5uF7VSbdX7NXF90Tp2xlzMYd0plhXGill34mu7XhltReWo5QzoTcnCkdLsxHcLNmYg3nIxizZLGDNpqreXlT1HrwPSCa7sPxnDFTJZkzhv_o_Xt2fFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227414340</pqid></control><display><type>article</type><title>Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wex, Sebastian ; Mancktelow, Neil S. ; Camacho, Alfredo ; Pennacchioni, Giorgio</creator><creatorcontrib>Wex, Sebastian ; Mancktelow, Neil S. ; Camacho, Alfredo ; Pennacchioni, Giorgio</creatorcontrib><description>The over 600 km long Woodroffe Thrust developed at lower to mid-crustal levels during the intracontinental Petermann Orogeny at ca. 560–520 Ma. Ductile deformation with a top-to-north shear sense was accommodated along a shallowly (≤30°) south-dipping surface. Metamorphic conditions during deformation are established along a 60 km N-S transect, providing an ideal framework for studying variation in microstructure and crystallographic preferred orientations with changing temperature (ca. 520–620 °C) and pressure/depth in dominantly dry felsic crust. In the Woodroffe Thrust mylonites, dynamic recrystallization of quartz was dominated by subgrain rotation, whereas feldspar underwent grain size reduction by neocrystallization. Differential stress, estimated from quartz grain size piezometry, decreases with increasing metamorphic grade (i.e., deeper structural levels), and indicates a long-term average strain rate of around 10−11–10−12 s−1. We propose a qualitative rheological model to explain the observed cyclic interplay between ductile shearing (mylonitization) and brittle fracturing (pseudotachylyte formation) in the relatively dry middle crust. The model involves the downward migration of earthquake ruptures from the overlying seismogenic zone, which transiently triggers seismic slip at mid-crustal levels. •The Woodroffe Thrust involves an interplay between brittle and ductile deformation.•Microstructures are analyzed along a ~60 km section in the direction of thrusting.•Quartz recrystallized mainly by subgrain rotation, feldspar by neocrystallization.•The long-term average strain rate of the Woodroffe Thrust was ca. 10–11–10-12 s-1.•Transient coseismic strain rate increase can trigger earthquakes at mid-crustal levels.</description><identifier>ISSN: 0040-1951</identifier><identifier>EISSN: 1879-3266</identifier><identifier>DOI: 10.1016/j.tecto.2018.10.024</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Brittle-ductile deformation ; Crystallography ; Deformation ; Deformation mechanisms ; Ductile fracture ; Ductile-brittle transition ; Dynamic recrystallization ; Earthquakes ; Feldspars ; Grain size ; Magma ; Microstructure ; Mid-crustal rheology ; Migration ; Musgrave Block ; Mylonite ; Orogeny ; Particle size ; Piezometers ; Pseudotachylyte ; Quartz ; Rheological properties ; Rheology ; Seismic activity ; Shearing ; Size reduction ; Solifluction ; Strain rate ; Woodroffe Thrust</subject><ispartof>Tectonophysics, 2019-05, Vol.758, p.55-72</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a354t-5e81e1b7814aeebec6742a5e765fc7dcfe0be5fa39c709fe8a6052a28c75fe863</citedby><cites>FETCH-LOGICAL-a354t-5e81e1b7814aeebec6742a5e765fc7dcfe0be5fa39c709fe8a6052a28c75fe863</cites><orcidid>0000-0002-7404-321X ; 0000-0002-5956-5327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tecto.2018.10.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wex, Sebastian</creatorcontrib><creatorcontrib>Mancktelow, Neil S.</creatorcontrib><creatorcontrib>Camacho, Alfredo</creatorcontrib><creatorcontrib>Pennacchioni, Giorgio</creatorcontrib><title>Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels</title><title>Tectonophysics</title><description>The over 600 km long Woodroffe Thrust developed at lower to mid-crustal levels during the intracontinental Petermann Orogeny at ca. 560–520 Ma. Ductile deformation with a top-to-north shear sense was accommodated along a shallowly (≤30°) south-dipping surface. Metamorphic conditions during deformation are established along a 60 km N-S transect, providing an ideal framework for studying variation in microstructure and crystallographic preferred orientations with changing temperature (ca. 520–620 °C) and pressure/depth in dominantly dry felsic crust. In the Woodroffe Thrust mylonites, dynamic recrystallization of quartz was dominated by subgrain rotation, whereas feldspar underwent grain size reduction by neocrystallization. Differential stress, estimated from quartz grain size piezometry, decreases with increasing metamorphic grade (i.e., deeper structural levels), and indicates a long-term average strain rate of around 10−11–10−12 s−1. We propose a qualitative rheological model to explain the observed cyclic interplay between ductile shearing (mylonitization) and brittle fracturing (pseudotachylyte formation) in the relatively dry middle crust. The model involves the downward migration of earthquake ruptures from the overlying seismogenic zone, which transiently triggers seismic slip at mid-crustal levels. •The Woodroffe Thrust involves an interplay between brittle and ductile deformation.•Microstructures are analyzed along a ~60 km section in the direction of thrusting.•Quartz recrystallized mainly by subgrain rotation, feldspar by neocrystallization.•The long-term average strain rate of the Woodroffe Thrust was ca. 10–11–10-12 s-1.•Transient coseismic strain rate increase can trigger earthquakes at mid-crustal levels.</description><subject>Brittle-ductile deformation</subject><subject>Crystallography</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Dynamic recrystallization</subject><subject>Earthquakes</subject><subject>Feldspars</subject><subject>Grain size</subject><subject>Magma</subject><subject>Microstructure</subject><subject>Mid-crustal rheology</subject><subject>Migration</subject><subject>Musgrave Block</subject><subject>Mylonite</subject><subject>Orogeny</subject><subject>Particle size</subject><subject>Piezometers</subject><subject>Pseudotachylyte</subject><subject>Quartz</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Seismic activity</subject><subject>Shearing</subject><subject>Size reduction</subject><subject>Solifluction</subject><subject>Strain rate</subject><subject>Woodroffe Thrust</subject><issn>0040-1951</issn><issn>1879-3266</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UcuOEzEQtBBIhIUv4NISVybYnrFncuCwWvGItBKXRRwtx9MmjiZ2aDuL5sY_8CX8El-CZwNXTt1dqqpWdzH2UvC14EK_OawLupLWkouhImsuu0dsJYZ-07RS68dsxXnHG7FR4il7lvOBc66F0iv2axsL0mmyM-ywfEeMkDHkY3DgybpyJgQbR7D_UEeIJwgRyh7hS0ojJe8R7vZ0zuU1OIyF7ATXdao1WPj94ydso0fC6DCDT_QgpT2mKX2dIXkgnGwJ9zjNMNIMLsUSYjWqPscwNm6xrv2ElZKfsyfeThlf_K1X7PP7d3c3H5vbTx-2N9e3jW1VVxqFg0Cx6wfRWcQdOt130irstfKuH51HvkPlbbtxPd94HKzmSlo5uF7VSbdX7NXF90Tp2xlzMYd0plhXGill34mu7XhltReWo5QzoTcnCkdLsxHcLNmYg3nIxizZLGDNpqreXlT1HrwPSCa7sPxnDFTJZkzhv_o_Xt2fFw</recordid><startdate>20190505</startdate><enddate>20190505</enddate><creator>Wex, Sebastian</creator><creator>Mancktelow, Neil S.</creator><creator>Camacho, Alfredo</creator><creator>Pennacchioni, Giorgio</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7404-321X</orcidid><orcidid>https://orcid.org/0000-0002-5956-5327</orcidid></search><sort><creationdate>20190505</creationdate><title>Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels</title><author>Wex, Sebastian ; Mancktelow, Neil S. ; Camacho, Alfredo ; Pennacchioni, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a354t-5e81e1b7814aeebec6742a5e765fc7dcfe0be5fa39c709fe8a6052a28c75fe863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brittle-ductile deformation</topic><topic>Crystallography</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Dynamic recrystallization</topic><topic>Earthquakes</topic><topic>Feldspars</topic><topic>Grain size</topic><topic>Magma</topic><topic>Microstructure</topic><topic>Mid-crustal rheology</topic><topic>Migration</topic><topic>Musgrave Block</topic><topic>Mylonite</topic><topic>Orogeny</topic><topic>Particle size</topic><topic>Piezometers</topic><topic>Pseudotachylyte</topic><topic>Quartz</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Seismic activity</topic><topic>Shearing</topic><topic>Size reduction</topic><topic>Solifluction</topic><topic>Strain rate</topic><topic>Woodroffe Thrust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wex, Sebastian</creatorcontrib><creatorcontrib>Mancktelow, Neil S.</creatorcontrib><creatorcontrib>Camacho, Alfredo</creatorcontrib><creatorcontrib>Pennacchioni, Giorgio</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tectonophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wex, Sebastian</au><au>Mancktelow, Neil S.</au><au>Camacho, Alfredo</au><au>Pennacchioni, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels</atitle><jtitle>Tectonophysics</jtitle><date>2019-05-05</date><risdate>2019</risdate><volume>758</volume><spage>55</spage><epage>72</epage><pages>55-72</pages><issn>0040-1951</issn><eissn>1879-3266</eissn><abstract>The over 600 km long Woodroffe Thrust developed at lower to mid-crustal levels during the intracontinental Petermann Orogeny at ca. 560–520 Ma. Ductile deformation with a top-to-north shear sense was accommodated along a shallowly (≤30°) south-dipping surface. Metamorphic conditions during deformation are established along a 60 km N-S transect, providing an ideal framework for studying variation in microstructure and crystallographic preferred orientations with changing temperature (ca. 520–620 °C) and pressure/depth in dominantly dry felsic crust. In the Woodroffe Thrust mylonites, dynamic recrystallization of quartz was dominated by subgrain rotation, whereas feldspar underwent grain size reduction by neocrystallization. Differential stress, estimated from quartz grain size piezometry, decreases with increasing metamorphic grade (i.e., deeper structural levels), and indicates a long-term average strain rate of around 10−11–10−12 s−1. We propose a qualitative rheological model to explain the observed cyclic interplay between ductile shearing (mylonitization) and brittle fracturing (pseudotachylyte formation) in the relatively dry middle crust. The model involves the downward migration of earthquake ruptures from the overlying seismogenic zone, which transiently triggers seismic slip at mid-crustal levels. •The Woodroffe Thrust involves an interplay between brittle and ductile deformation.•Microstructures are analyzed along a ~60 km section in the direction of thrusting.•Quartz recrystallized mainly by subgrain rotation, feldspar by neocrystallization.•The long-term average strain rate of the Woodroffe Thrust was ca. 10–11–10-12 s-1.•Transient coseismic strain rate increase can trigger earthquakes at mid-crustal levels.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tecto.2018.10.024</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7404-321X</orcidid><orcidid>https://orcid.org/0000-0002-5956-5327</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-1951
ispartof Tectonophysics, 2019-05, Vol.758, p.55-72
issn 0040-1951
1879-3266
language eng
recordid cdi_proquest_journals_2227414340
source Access via ScienceDirect (Elsevier)
subjects Brittle-ductile deformation
Crystallography
Deformation
Deformation mechanisms
Ductile fracture
Ductile-brittle transition
Dynamic recrystallization
Earthquakes
Feldspars
Grain size
Magma
Microstructure
Mid-crustal rheology
Migration
Musgrave Block
Mylonite
Orogeny
Particle size
Piezometers
Pseudotachylyte
Quartz
Rheological properties
Rheology
Seismic activity
Shearing
Size reduction
Solifluction
Strain rate
Woodroffe Thrust
title Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20between%20seismic%20fracture%20and%20aseismic%20creep%20in%20the%20Woodroffe%20Thrust,%20central%20Australia%20%E2%80%93%20Inferences%20for%20the%20rheology%20of%20relatively%20dry%20continental%20mid-crustal%20levels&rft.jtitle=Tectonophysics&rft.au=Wex,%20Sebastian&rft.date=2019-05-05&rft.volume=758&rft.spage=55&rft.epage=72&rft.pages=55-72&rft.issn=0040-1951&rft.eissn=1879-3266&rft_id=info:doi/10.1016/j.tecto.2018.10.024&rft_dat=%3Cproquest_cross%3E2227414340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227414340&rft_id=info:pmid/&rft_els_id=S0040195118303524&rfr_iscdi=true