Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels
The over 600 km long Woodroffe Thrust developed at lower to mid-crustal levels during the intracontinental Petermann Orogeny at ca. 560–520 Ma. Ductile deformation with a top-to-north shear sense was accommodated along a shallowly (≤30°) south-dipping surface. Metamorphic conditions during deformati...
Gespeichert in:
Veröffentlicht in: | Tectonophysics 2019-05, Vol.758, p.55-72 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | |
container_start_page | 55 |
container_title | Tectonophysics |
container_volume | 758 |
creator | Wex, Sebastian Mancktelow, Neil S. Camacho, Alfredo Pennacchioni, Giorgio |
description | The over 600 km long Woodroffe Thrust developed at lower to mid-crustal levels during the intracontinental Petermann Orogeny at ca. 560–520 Ma. Ductile deformation with a top-to-north shear sense was accommodated along a shallowly (≤30°) south-dipping surface. Metamorphic conditions during deformation are established along a 60 km N-S transect, providing an ideal framework for studying variation in microstructure and crystallographic preferred orientations with changing temperature (ca. 520–620 °C) and pressure/depth in dominantly dry felsic crust. In the Woodroffe Thrust mylonites, dynamic recrystallization of quartz was dominated by subgrain rotation, whereas feldspar underwent grain size reduction by neocrystallization. Differential stress, estimated from quartz grain size piezometry, decreases with increasing metamorphic grade (i.e., deeper structural levels), and indicates a long-term average strain rate of around 10−11–10−12 s−1. We propose a qualitative rheological model to explain the observed cyclic interplay between ductile shearing (mylonitization) and brittle fracturing (pseudotachylyte formation) in the relatively dry middle crust. The model involves the downward migration of earthquake ruptures from the overlying seismogenic zone, which transiently triggers seismic slip at mid-crustal levels.
•The Woodroffe Thrust involves an interplay between brittle and ductile deformation.•Microstructures are analyzed along a ~60 km section in the direction of thrusting.•Quartz recrystallized mainly by subgrain rotation, feldspar by neocrystallization.•The long-term average strain rate of the Woodroffe Thrust was ca. 10–11–10-12 s-1.•Transient coseismic strain rate increase can trigger earthquakes at mid-crustal levels. |
doi_str_mv | 10.1016/j.tecto.2018.10.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2227414340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040195118303524</els_id><sourcerecordid>2227414340</sourcerecordid><originalsourceid>FETCH-LOGICAL-a354t-5e81e1b7814aeebec6742a5e765fc7dcfe0be5fa39c709fe8a6052a28c75fe863</originalsourceid><addsrcrecordid>eNp9UcuOEzEQtBBIhIUv4NISVybYnrFncuCwWvGItBKXRRwtx9MmjiZ2aDuL5sY_8CX8El-CZwNXTt1dqqpWdzH2UvC14EK_OawLupLWkouhImsuu0dsJYZ-07RS68dsxXnHG7FR4il7lvOBc66F0iv2axsL0mmyM-ywfEeMkDHkY3DgybpyJgQbR7D_UEeIJwgRyh7hS0ojJe8R7vZ0zuU1OIyF7ATXdao1WPj94ydso0fC6DCDT_QgpT2mKX2dIXkgnGwJ9zjNMNIMLsUSYjWqPscwNm6xrv2ElZKfsyfeThlf_K1X7PP7d3c3H5vbTx-2N9e3jW1VVxqFg0Cx6wfRWcQdOt130irstfKuH51HvkPlbbtxPd94HKzmSlo5uF7VSbdX7NXF90Tp2xlzMYd0plhXGill34mu7XhltReWo5QzoTcnCkdLsxHcLNmYg3nIxizZLGDNpqreXlT1HrwPSCa7sPxnDFTJZkzhv_o_Xt2fFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227414340</pqid></control><display><type>article</type><title>Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wex, Sebastian ; Mancktelow, Neil S. ; Camacho, Alfredo ; Pennacchioni, Giorgio</creator><creatorcontrib>Wex, Sebastian ; Mancktelow, Neil S. ; Camacho, Alfredo ; Pennacchioni, Giorgio</creatorcontrib><description>The over 600 km long Woodroffe Thrust developed at lower to mid-crustal levels during the intracontinental Petermann Orogeny at ca. 560–520 Ma. Ductile deformation with a top-to-north shear sense was accommodated along a shallowly (≤30°) south-dipping surface. Metamorphic conditions during deformation are established along a 60 km N-S transect, providing an ideal framework for studying variation in microstructure and crystallographic preferred orientations with changing temperature (ca. 520–620 °C) and pressure/depth in dominantly dry felsic crust. In the Woodroffe Thrust mylonites, dynamic recrystallization of quartz was dominated by subgrain rotation, whereas feldspar underwent grain size reduction by neocrystallization. Differential stress, estimated from quartz grain size piezometry, decreases with increasing metamorphic grade (i.e., deeper structural levels), and indicates a long-term average strain rate of around 10−11–10−12 s−1. We propose a qualitative rheological model to explain the observed cyclic interplay between ductile shearing (mylonitization) and brittle fracturing (pseudotachylyte formation) in the relatively dry middle crust. The model involves the downward migration of earthquake ruptures from the overlying seismogenic zone, which transiently triggers seismic slip at mid-crustal levels.
•The Woodroffe Thrust involves an interplay between brittle and ductile deformation.•Microstructures are analyzed along a ~60 km section in the direction of thrusting.•Quartz recrystallized mainly by subgrain rotation, feldspar by neocrystallization.•The long-term average strain rate of the Woodroffe Thrust was ca. 10–11–10-12 s-1.•Transient coseismic strain rate increase can trigger earthquakes at mid-crustal levels.</description><identifier>ISSN: 0040-1951</identifier><identifier>EISSN: 1879-3266</identifier><identifier>DOI: 10.1016/j.tecto.2018.10.024</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Brittle-ductile deformation ; Crystallography ; Deformation ; Deformation mechanisms ; Ductile fracture ; Ductile-brittle transition ; Dynamic recrystallization ; Earthquakes ; Feldspars ; Grain size ; Magma ; Microstructure ; Mid-crustal rheology ; Migration ; Musgrave Block ; Mylonite ; Orogeny ; Particle size ; Piezometers ; Pseudotachylyte ; Quartz ; Rheological properties ; Rheology ; Seismic activity ; Shearing ; Size reduction ; Solifluction ; Strain rate ; Woodroffe Thrust</subject><ispartof>Tectonophysics, 2019-05, Vol.758, p.55-72</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a354t-5e81e1b7814aeebec6742a5e765fc7dcfe0be5fa39c709fe8a6052a28c75fe863</citedby><cites>FETCH-LOGICAL-a354t-5e81e1b7814aeebec6742a5e765fc7dcfe0be5fa39c709fe8a6052a28c75fe863</cites><orcidid>0000-0002-7404-321X ; 0000-0002-5956-5327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tecto.2018.10.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wex, Sebastian</creatorcontrib><creatorcontrib>Mancktelow, Neil S.</creatorcontrib><creatorcontrib>Camacho, Alfredo</creatorcontrib><creatorcontrib>Pennacchioni, Giorgio</creatorcontrib><title>Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels</title><title>Tectonophysics</title><description>The over 600 km long Woodroffe Thrust developed at lower to mid-crustal levels during the intracontinental Petermann Orogeny at ca. 560–520 Ma. Ductile deformation with a top-to-north shear sense was accommodated along a shallowly (≤30°) south-dipping surface. Metamorphic conditions during deformation are established along a 60 km N-S transect, providing an ideal framework for studying variation in microstructure and crystallographic preferred orientations with changing temperature (ca. 520–620 °C) and pressure/depth in dominantly dry felsic crust. In the Woodroffe Thrust mylonites, dynamic recrystallization of quartz was dominated by subgrain rotation, whereas feldspar underwent grain size reduction by neocrystallization. Differential stress, estimated from quartz grain size piezometry, decreases with increasing metamorphic grade (i.e., deeper structural levels), and indicates a long-term average strain rate of around 10−11–10−12 s−1. We propose a qualitative rheological model to explain the observed cyclic interplay between ductile shearing (mylonitization) and brittle fracturing (pseudotachylyte formation) in the relatively dry middle crust. The model involves the downward migration of earthquake ruptures from the overlying seismogenic zone, which transiently triggers seismic slip at mid-crustal levels.
•The Woodroffe Thrust involves an interplay between brittle and ductile deformation.•Microstructures are analyzed along a ~60 km section in the direction of thrusting.•Quartz recrystallized mainly by subgrain rotation, feldspar by neocrystallization.•The long-term average strain rate of the Woodroffe Thrust was ca. 10–11–10-12 s-1.•Transient coseismic strain rate increase can trigger earthquakes at mid-crustal levels.</description><subject>Brittle-ductile deformation</subject><subject>Crystallography</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Dynamic recrystallization</subject><subject>Earthquakes</subject><subject>Feldspars</subject><subject>Grain size</subject><subject>Magma</subject><subject>Microstructure</subject><subject>Mid-crustal rheology</subject><subject>Migration</subject><subject>Musgrave Block</subject><subject>Mylonite</subject><subject>Orogeny</subject><subject>Particle size</subject><subject>Piezometers</subject><subject>Pseudotachylyte</subject><subject>Quartz</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Seismic activity</subject><subject>Shearing</subject><subject>Size reduction</subject><subject>Solifluction</subject><subject>Strain rate</subject><subject>Woodroffe Thrust</subject><issn>0040-1951</issn><issn>1879-3266</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UcuOEzEQtBBIhIUv4NISVybYnrFncuCwWvGItBKXRRwtx9MmjiZ2aDuL5sY_8CX8El-CZwNXTt1dqqpWdzH2UvC14EK_OawLupLWkouhImsuu0dsJYZ-07RS68dsxXnHG7FR4il7lvOBc66F0iv2axsL0mmyM-ywfEeMkDHkY3DgybpyJgQbR7D_UEeIJwgRyh7hS0ojJe8R7vZ0zuU1OIyF7ATXdao1WPj94ydso0fC6DCDT_QgpT2mKX2dIXkgnGwJ9zjNMNIMLsUSYjWqPscwNm6xrv2ElZKfsyfeThlf_K1X7PP7d3c3H5vbTx-2N9e3jW1VVxqFg0Cx6wfRWcQdOt130irstfKuH51HvkPlbbtxPd94HKzmSlo5uF7VSbdX7NXF90Tp2xlzMYd0plhXGill34mu7XhltReWo5QzoTcnCkdLsxHcLNmYg3nIxizZLGDNpqreXlT1HrwPSCa7sPxnDFTJZkzhv_o_Xt2fFw</recordid><startdate>20190505</startdate><enddate>20190505</enddate><creator>Wex, Sebastian</creator><creator>Mancktelow, Neil S.</creator><creator>Camacho, Alfredo</creator><creator>Pennacchioni, Giorgio</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7404-321X</orcidid><orcidid>https://orcid.org/0000-0002-5956-5327</orcidid></search><sort><creationdate>20190505</creationdate><title>Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels</title><author>Wex, Sebastian ; Mancktelow, Neil S. ; Camacho, Alfredo ; Pennacchioni, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a354t-5e81e1b7814aeebec6742a5e765fc7dcfe0be5fa39c709fe8a6052a28c75fe863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brittle-ductile deformation</topic><topic>Crystallography</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Dynamic recrystallization</topic><topic>Earthquakes</topic><topic>Feldspars</topic><topic>Grain size</topic><topic>Magma</topic><topic>Microstructure</topic><topic>Mid-crustal rheology</topic><topic>Migration</topic><topic>Musgrave Block</topic><topic>Mylonite</topic><topic>Orogeny</topic><topic>Particle size</topic><topic>Piezometers</topic><topic>Pseudotachylyte</topic><topic>Quartz</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Seismic activity</topic><topic>Shearing</topic><topic>Size reduction</topic><topic>Solifluction</topic><topic>Strain rate</topic><topic>Woodroffe Thrust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wex, Sebastian</creatorcontrib><creatorcontrib>Mancktelow, Neil S.</creatorcontrib><creatorcontrib>Camacho, Alfredo</creatorcontrib><creatorcontrib>Pennacchioni, Giorgio</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tectonophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wex, Sebastian</au><au>Mancktelow, Neil S.</au><au>Camacho, Alfredo</au><au>Pennacchioni, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels</atitle><jtitle>Tectonophysics</jtitle><date>2019-05-05</date><risdate>2019</risdate><volume>758</volume><spage>55</spage><epage>72</epage><pages>55-72</pages><issn>0040-1951</issn><eissn>1879-3266</eissn><abstract>The over 600 km long Woodroffe Thrust developed at lower to mid-crustal levels during the intracontinental Petermann Orogeny at ca. 560–520 Ma. Ductile deformation with a top-to-north shear sense was accommodated along a shallowly (≤30°) south-dipping surface. Metamorphic conditions during deformation are established along a 60 km N-S transect, providing an ideal framework for studying variation in microstructure and crystallographic preferred orientations with changing temperature (ca. 520–620 °C) and pressure/depth in dominantly dry felsic crust. In the Woodroffe Thrust mylonites, dynamic recrystallization of quartz was dominated by subgrain rotation, whereas feldspar underwent grain size reduction by neocrystallization. Differential stress, estimated from quartz grain size piezometry, decreases with increasing metamorphic grade (i.e., deeper structural levels), and indicates a long-term average strain rate of around 10−11–10−12 s−1. We propose a qualitative rheological model to explain the observed cyclic interplay between ductile shearing (mylonitization) and brittle fracturing (pseudotachylyte formation) in the relatively dry middle crust. The model involves the downward migration of earthquake ruptures from the overlying seismogenic zone, which transiently triggers seismic slip at mid-crustal levels.
•The Woodroffe Thrust involves an interplay between brittle and ductile deformation.•Microstructures are analyzed along a ~60 km section in the direction of thrusting.•Quartz recrystallized mainly by subgrain rotation, feldspar by neocrystallization.•The long-term average strain rate of the Woodroffe Thrust was ca. 10–11–10-12 s-1.•Transient coseismic strain rate increase can trigger earthquakes at mid-crustal levels.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tecto.2018.10.024</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7404-321X</orcidid><orcidid>https://orcid.org/0000-0002-5956-5327</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1951 |
ispartof | Tectonophysics, 2019-05, Vol.758, p.55-72 |
issn | 0040-1951 1879-3266 |
language | eng |
recordid | cdi_proquest_journals_2227414340 |
source | Access via ScienceDirect (Elsevier) |
subjects | Brittle-ductile deformation Crystallography Deformation Deformation mechanisms Ductile fracture Ductile-brittle transition Dynamic recrystallization Earthquakes Feldspars Grain size Magma Microstructure Mid-crustal rheology Migration Musgrave Block Mylonite Orogeny Particle size Piezometers Pseudotachylyte Quartz Rheological properties Rheology Seismic activity Shearing Size reduction Solifluction Strain rate Woodroffe Thrust |
title | Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20between%20seismic%20fracture%20and%20aseismic%20creep%20in%20the%20Woodroffe%20Thrust,%20central%20Australia%20%E2%80%93%20Inferences%20for%20the%20rheology%20of%20relatively%20dry%20continental%20mid-crustal%20levels&rft.jtitle=Tectonophysics&rft.au=Wex,%20Sebastian&rft.date=2019-05-05&rft.volume=758&rft.spage=55&rft.epage=72&rft.pages=55-72&rft.issn=0040-1951&rft.eissn=1879-3266&rft_id=info:doi/10.1016/j.tecto.2018.10.024&rft_dat=%3Cproquest_cross%3E2227414340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227414340&rft_id=info:pmid/&rft_els_id=S0040195118303524&rfr_iscdi=true |