Interplay between seismic fracture and aseismic creep in the Woodroffe Thrust, central Australia – Inferences for the rheology of relatively dry continental mid-crustal levels

The over 600 km long Woodroffe Thrust developed at lower to mid-crustal levels during the intracontinental Petermann Orogeny at ca. 560–520 Ma. Ductile deformation with a top-to-north shear sense was accommodated along a shallowly (≤30°) south-dipping surface. Metamorphic conditions during deformati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonophysics 2019-05, Vol.758, p.55-72
Hauptverfasser: Wex, Sebastian, Mancktelow, Neil S., Camacho, Alfredo, Pennacchioni, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The over 600 km long Woodroffe Thrust developed at lower to mid-crustal levels during the intracontinental Petermann Orogeny at ca. 560–520 Ma. Ductile deformation with a top-to-north shear sense was accommodated along a shallowly (≤30°) south-dipping surface. Metamorphic conditions during deformation are established along a 60 km N-S transect, providing an ideal framework for studying variation in microstructure and crystallographic preferred orientations with changing temperature (ca. 520–620 °C) and pressure/depth in dominantly dry felsic crust. In the Woodroffe Thrust mylonites, dynamic recrystallization of quartz was dominated by subgrain rotation, whereas feldspar underwent grain size reduction by neocrystallization. Differential stress, estimated from quartz grain size piezometry, decreases with increasing metamorphic grade (i.e., deeper structural levels), and indicates a long-term average strain rate of around 10−11–10−12 s−1. We propose a qualitative rheological model to explain the observed cyclic interplay between ductile shearing (mylonitization) and brittle fracturing (pseudotachylyte formation) in the relatively dry middle crust. The model involves the downward migration of earthquake ruptures from the overlying seismogenic zone, which transiently triggers seismic slip at mid-crustal levels. •The Woodroffe Thrust involves an interplay between brittle and ductile deformation.•Microstructures are analyzed along a ~60 km section in the direction of thrusting.•Quartz recrystallized mainly by subgrain rotation, feldspar by neocrystallization.•The long-term average strain rate of the Woodroffe Thrust was ca. 10–11–10-12 s-1.•Transient coseismic strain rate increase can trigger earthquakes at mid-crustal levels.
ISSN:0040-1951
1879-3266
DOI:10.1016/j.tecto.2018.10.024