A symmetry-breaking phenomenon and asymptotic profiles of least-energy solutions to a nonlinear Schrödinger equation

In this paper, we study a symmetry-breaking phenomenon of a least-energy solution to a nonlinear Schrödinger equation under suitable assumptions on V(x), where λ > 1, p > 2 and χA is the characteristic function of the set A = [-(l + 2), -l] [l,l + 2] with l > 0. We also study asymptotic pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2005-04, Vol.135 (2), p.357
Hauptverfasser: Kurata, Kazuhiro, Watanabe, Tatsuya, Shibata, Masataka
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study a symmetry-breaking phenomenon of a least-energy solution to a nonlinear Schrödinger equation under suitable assumptions on V(x), where λ > 1, p > 2 and χA is the characteristic function of the set A = [-(l + 2), -l] [l,l + 2] with l > 0. We also study asymptotic profiles of least-energy solutions for the singularly perturbed problem for small [straight epsilon] > 0. [PUBLICATION ABSTRACT]
ISSN:0308-2105
1473-7124
DOI:10.1017/S030821050500020X