A symmetry-breaking phenomenon and asymptotic profiles of least-energy solutions to a nonlinear Schrödinger equation
In this paper, we study a symmetry-breaking phenomenon of a least-energy solution to a nonlinear Schrödinger equation under suitable assumptions on V(x), where λ > 1, p > 2 and χA is the characteristic function of the set A = [-(l + 2), -l] [l,l + 2] with l > 0. We also study asymptotic pro...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2005-04, Vol.135 (2), p.357 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study a symmetry-breaking phenomenon of a least-energy solution to a nonlinear Schrödinger equation under suitable assumptions on V(x), where λ > 1, p > 2 and χA is the characteristic function of the set A = [-(l + 2), -l] [l,l + 2] with l > 0. We also study asymptotic profiles of least-energy solutions for the singularly perturbed problem for small [straight epsilon] > 0. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/S030821050500020X |