Evaluating Portable Mechanisms for Legitimate Execution Stack Access with a Scheme Interpreter in an Extended SC Language

Scheme implementations should be properly tail-recursive and support garbage collection. To reduce the development costs, a Scheme interpreter called JAKLD, which is written in Java, was designed to use execution stacks simply. JAKLD with interchangeable garbage collectors was reimplemented in C. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Information Processing 2019, Vol.27, pp.177-189
Hauptverfasser: Yasugi, Masahiro, Ikeuchi, Reichi, Hiraishi, Tasuku, Komiya, Tsuneyasu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scheme implementations should be properly tail-recursive and support garbage collection. To reduce the development costs, a Scheme interpreter called JAKLD, which is written in Java, was designed to use execution stacks simply. JAKLD with interchangeable garbage collectors was reimplemented in C. In addition, we have proposed an efficient C-based implementation written in an extended C language called XC-cube, which features language mechanisms for implementing high-level programming languages such as “L-closures” for legitimate execution stack access, with which a running program/process can legitimately access data deeply in execution stacks (C stacks). L-closures are lightweight lexical closures created from nested function definitions. In addition to enhanced C compilers, we have portable implementations of L-closures, which are translators from an extended S-expression based C language into the standard C language. Furthermore, we have another mechanism for legitimate execution stack access, called “closures”. Closures are standard lexical closures created from nested function definitions. Closures can also be implemented using translators. In this study, JAKLD was reimplemented in an extended SC language (S-expression based C language) that features nested functions to evaluate (L-)closures and their implementations, including translators.
ISSN:1882-6652
1882-6652
DOI:10.2197/ipsjjip.27.177