Rapid mixing of hypergraph independent sets
We prove that the mixing time of the Glauber dynamics for sampling independent sets on n‐vertex k‐uniform hypergraphs is O(nlogn) when the maximum degree Δ satisfies Δ ≤ c2k/2, improving on the previous bound Bordewich and co‐workers of Δ ≤ k − 2. This result brings the algorithmic bound to within a...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2019-07, Vol.54 (4), p.730-767 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the mixing time of the Glauber dynamics for sampling independent sets on n‐vertex k‐uniform hypergraphs is O(nlogn) when the maximum degree Δ satisfies Δ ≤ c2k/2, improving on the previous bound Bordewich and co‐workers of Δ ≤ k − 2. This result brings the algorithmic bound to within a constant factor of the hardness bound of Bezakova and co‐workers which showed that it is NP‐hard to approximately count independent sets on hypergraphs when Δ ≥ 5·2k/2. |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.20830 |