Rapid mixing of hypergraph independent sets

We prove that the mixing time of the Glauber dynamics for sampling independent sets on n‐vertex k‐uniform hypergraphs is O(nlogn) when the maximum degree Δ satisfies Δ ≤ c2k/2, improving on the previous bound Bordewich and co‐workers of Δ ≤ k − 2. This result brings the algorithmic bound to within a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2019-07, Vol.54 (4), p.730-767
Hauptverfasser: Hermon, Jonathan, Sly, Allan, Zhang, Yumeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the mixing time of the Glauber dynamics for sampling independent sets on n‐vertex k‐uniform hypergraphs is O(nlogn) when the maximum degree Δ satisfies Δ ≤ c2k/2, improving on the previous bound Bordewich and co‐workers of Δ ≤ k − 2. This result brings the algorithmic bound to within a constant factor of the hardness bound of Bezakova and co‐workers which showed that it is NP‐hard to approximately count independent sets on hypergraphs when Δ ≥ 5·2k/2.
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20830